В представлении ребёнка логика, как правило, действует фрагментарно, до какого-то момента она есть, потом отсутствует, а потом появляется снова. Но ребёнку это простительно, а учёному нет.
IX. Принцип работы ускорителей заряженных частиц
В свете механики этот принцип довольно прост. Он заключается в создании ионизированных цепей высокого напряжения. Чем серьёзнее ускоритель – тем большее напряжение ионизированной цепи он стремится создать, и основная характеристика ускорителей – это заряд цепи в диэлектрике, как правило в вакууме. При этом не имеет значения, кольцевой у вас ускоритель или линейный – частицы высоких энергий можно получить и там, и там.
Большой адронный коллайдер (6,5 ТэВ) не разгоняет частицы по кольцу с периметром 26,6 км., он только раскручивает их. Частицы высоких энергий вращаются вокруг общей оси, которая сейчас считается траекторией их движения. Ошибка была допущена 100 лет назад Эйнштейном и компанией…
Ошибка заключается в том, что для любого теоретического движения требуется преодолевать теоретическое сопротивление. Но это не было учтено, не было сделано в расчётах… В реальном же мире частицам нет необходимости двигаться куда-либо, чтобы передавать энергию на расстояние со скоростью света, им достаточно вращаться как волчкам.
Коллайдер разряжает частицы в вакууме, тем самым увеличивая их в размерах; а затем вращает частицы с высокой угловой скоростью, в точности воспроизводя космические лучи высоких энергий в космическом вакууме.
Коллайдер следовало бы использовать для составления паспорта (даташита) на космические лучи разных энергий, чтобы знать, с чем приходится работать в космосе. Описывать свойства лучей, заносить в таблицу, и по ней интерпретировать свойства лучей в космическом пространстве.
Детектировать же встречные токи от двух пучков на БАК бессмысленно. Для этого не нужно было строить коллайдер, так как есть менее громоздкая схема. Возьмите, например, два высоковольтных провода одной полярности от двух электростанций, генерирующих постоянный ток – и соедините их, а место соединения детектируйте теми же датчиками, что на БАК – и вы получите абсолютно тот же результат, если обеспечите ту же чистоту эксперимента, что на БАКе. Для чистоты эксперимента можно использовать электрические фильтры. Два провода одной полярности от двух батарей соединять не опасно. Между ними минимальная разница потенциалов. Два провода одной полярности образуют ионные нити, которые друг от друга отталкиваются, но на микроскопической разнице потенциалов взаимодействуют, производя мизерные токи, которые регистрируются детекторами коллайдера и подаются мировому сообществу как «новые частицы», образовавшиеся в результате «столкновений». Но в том-то и дело, что нет никаких столкновений. Были бы столкновения – были бы взрывы.
Встречное лобовое столкновение движущихся частиц с гигантскими потенциалами – это в любом случае взрыв. Однако вместо взрыва детектор ловит лишь крохотный ток, свидетельствующий о разнице вращающихся потенциалов. Как такое несоответствие укладывается в рамки теории относительности, которая на этом коллайдере якобы прекрасно работает – догадаться не трудно. Учёным нужны деньги, большие проекты, поэтому теория относительности не только хорошо себя зарекомендовала, но и может применяться везде, где есть ошибки и несоответствия [в уплате налогов]. А кто в это не верит – тот не знает науку.
Вообще же любые игрушки на электрическом токе, их принцип действия, получаемый результат можно объяснить действием законов «классической Ньютоновской механики», правда не всех законов, а только тех из них, где не были допущены ошибки самим господином Ньютоном. К сожалению, у Ньютона тоже ошибки Вселенского масштаба есть, но они в его время были гипотетическими и возникали из-за недостатка данных. В наше время эти данные можно было бы восполнить и привести всё в порядок, но… мешают ошибки Ньютона! Они успели создать стереотипные научные представления, которые в ХХ веке утвердились и стали аксиомой. До их утверждения ещё можно было собирать данные по разным гипотезам, сейчас этого делать уже нельзя – выгонят из науки.
В целом, проблема, о которой я говорю, является чисто психологической для общества уч?ных, в котором за сотни лет сложилось не одно идеалистическое представление. Никто не хочет разочаровываться в результатах своего труда, это понятно, поэтому переходят на сложные термины и загадочные формулировки… Но наука – это то, что можно объяснить и понять за 5 минут по любому предмету, если избегать логических противоречий, не отделять бетонной стеной физику от медицины, например, квантовую физику от классической (сопромат является частью последней). Ведь не важно, в ч?м вы считаете заряд – в кулонах или в миллиамперчасах, вы считаете заряд. Нужно понимать, что вы делаете. И не приписывать одним и тем же действиям разные свойства. Если на квантовом уровне действия трудно различимы, это не значит, что нет таких схем, которые описывали бы последствия действий, совершаемых зарядами на квантовом уровне. Ум на то и дан человеку, чтобы видеть за ширмой то, что имеет продолжение с края от ширмы… С другой стороны, не стоит пытаться впихивать в науку то, что не было проверено опытным путём, в ч?м не удалось убедиться, отбросив все сомнения. Например, строение зарядов. Я ничего не говорю о строении зарядов, потому что любое дополнение в этом плане даст им несуществующие свойства! Например, заряд можно представить в виде сферы – но тогда возникнет вопрос трения между зарядами, а этого трения, как правило, нет. Оно появляется, но редко, когда параметры выше допустимых. Мне сложно сказать, за счёт чего включается и выключается механизм сцепления между зарядами – но по вакууму я вижу, что заряды не терпят пустоты вокруг себя и заполняют всё пространство, при этом не увеличивая свою массу, они снижают свою плотность, если находят место для расширения. Свойство токовой проводимости (количество проводимого тока в целом зависит от толщины и плотности проводника) указывает на свойство зарядов сцепляться и передавать друг другу вращение в плоскости, перпендикулярной оси вращения.
Я заостряю внимание на тех моментах, которые бесспорны. В целом, эти моменты говорят о том, что заряд – это вращение. Чего и как – не вполне понятно. С глубокой древности говорили, что это коловорот. Очень похоже. Но вращается он постоянно или только когда переда?т вращение соседнему заряду – не ясно. Почему греются тонкие провода, когда по ним течёт ток выше допустимого? Заряды пробуксовывают, не хватает силы сцепления? Ведь повышение температуры указывает на появление силы трения между зарядами. Если толщину провода увеличить, то это трение исчезнет, проводимость станет больше.
Возвращаясь к коллайдеру: единственная крупная авария на коллайдере, которая была в 2008-м, была вызвана недостаточной толщиной изоляции на одном из проводников, питающих электромагниты. Пробой электрического тока привёл к механическим повреждениям.
Не было, поскольку не могло быть, никаких аварий, связанных с прострелом высокоэнергетическими пучками каких-либо механизмов, или их износа из-за этих прострелов. Слабых мест в этом отношении обнаружено не было. А ведь это как раз то, что неизвестно было проектировщикам оборудования изначально, и должно было привести к износу или к аварии, рано или поздно. Ну, как вам это объяснить? Всё оборудование на БАКе проектировалось на статичное поведение материалов. Если бы там что-то начало летать, стрелять и бомбить – оборудование вышло бы из строя, ибо нерасчётный режим. Но таких аварий никогда на БАКе не было.
Вместо этого к аварии привела элементарная халатность – то, что можно было предусмотреть заранее, не предусмотрели.
Разгоняя и сталкивая частицы, мы не видим их сопротивления. Это как-то не серьёзно. Ионные нити, называемые на коллайдере пучками, имеют огромные потенциалы напряжения, но два одинаковых знака вращения друг от друга отталкиваются и эти потенциалы не взаимодействуют. При направлении пучков друг на друга, они расходятся в разные стороны, ионизируя материал, который используется в качестве защиты от их дальнейшего распространения, вне зоны коллайдера. В этом защитном материале происходит рассеяние пучков. В целом материал выполняет ту же функцию, что и обычная изоляция высоковольтного провода.
Всё описанное творится на любой электростанции. Для того, чтобы изучать процессы, связанные с электричеством, не нужно было строить коллайдер. А все подготовительные манипуляции с пучками, ионами, разгон диэлектрического напряжения на коллайдере, попытка получить закономерный мизерный ток от двух одинаковых полярностей – это не распиливание бюджетных средств, это ошибка Эйнштейна и компании, не учитывавшей сопромат. Хотя и сопромат-то знать в принципе не надо – если две кинетические энергии движутся навстречу друг другу, любая пчела поймёт, что должно быть.
X. Частицы с рукавами
Это одна из версий того, как могут выглядеть частицы, каково их устройство. Версия, объясняющая присущие им свойства по части механики.
Ранее я отмечал, что частицы полностью подобны друг другу[1 - В названиях элементарных частиц, широко используемых в физике, зашифрованы состояния одной и той же частицы, или одного и того же вида частиц. Например, электроном принято называть вращение частицы против часовой стрелки при регистрации частицы с одного полюса, протоном – вращение этой же частицы по часовой стрелке, при регистрации е? с другого полюса, а нейтроном – регистрацию частицы со спаренным зарядом, плюс и минус. Стабильность состояний частиц обеспечивается внутренней плотностью частиц – эта плотность всегда стабильна, а также ориентацией частиц в гравитационном поле Земли, планет, звёзд – направление гравитационного поля тоже стабильно, способом регистрации текущих состояний частиц и некоторыми другими факторами. На этом стабильность, предсказуемость частиц заканчивается. Каждая новая смена состояния приводит к «превращению одних частиц в другие», а ведь это естественное взаимодействие частиц друг с другом, строго по правилам механики.], никогда не меняются относительно друг друга, сколько бы времени ни прошло, они всё те же, и на основании этого делал вывод, что они есть многочисленные отражения одного и того же, элементарного по своему состоянию, но связанного, замкнутого бесконечно малого мира с бесконечно большим. Поскольку пространство не может быть конечным ни в сторону уменьшения, ни в сторону увеличения, оно имеет форму замкнутости. И эта форма в более многомерном мире, чем наш, может выглядеть вполне представляемой воображению. Я посчитал, что бесконечно малые частицы замкнуты с бесконечно большой Вселенной. Но вот что интересно. Форма спиральной Галактики, именно Галактики, а не Вселенной, более всего подходит под описание свойств элементарных частиц… В частности, форма нашей Галактики, Млечный Путь, поскольку мы в ней находимся, укладывается в представление формы элементарных частиц, более того с древнейших времён образ этой формы обозначается на важнейших славянских, ведических символах, как основа существующего мироздания.
Если «отражения» частиц идут от Млечного Пути, то «круг» замкнулся, и всё встало на свои места?.. При увеличении темпов вращения, рукава частицы, возможно, распрямляются, за счёт чего она переда?т ток соседним частицам, слева, справа от себя. При этом все частицы вращаются навстречу друг другу, передавая энергию по проводу (проводнику). Темп вращения задаётся напряжением и увеличивается с ростом напряжения. Напряжение формируется за счёт осевого насаживания частиц друг на друга, за счёт стягивания, притяжения, определяемого как магнетизм. Это притяжение формируется благодаря вращению спиралевидных частиц. Когда одна спиралевидная частица сближается с другой по оси, они ввинчиваются друг в друга, в результате чего их вращение синхронизируется, они легко становятся одним целым… Механизм ввинчивания частиц можно прочувствовать на магнитах: чем ближе подносишь магниты друг к другу, тем сильнее они притягиваются. Область захвата магнитных полей увеличивается с уменьшением расстояния между магнитами, увеличивается и сила притяжения. При этом поля есть поля… Они создают не жёсткое резьбовое соединение, а мягкое, словно текучее. Магниты можно расцепить, если приложить достаточную для этого силу…
Магниты, независимо от размеров, очень точно воспроизводят поведение элементарных частиц, зарядов, что в свою очередь указывает на достаточно сильную согласованность движений частиц (вместе они – сила!).
При помощи магнитов можно понять, что происходит с частицами на микроуровне, который мы наблюдать не в состоянии, способны лишь поверхностно оценить всё происходящее на этом уровне при помощи электронного микроскопа.
В вакууме рукава частиц распрямляются, поэтому они занимают весь объём, не увеличивая свою массу. Кроме того, частица в вакууме раздувается так или иначе, потому что в вакууме она может увеличиваться бесконечно, вплоть до размеров Галактики… Если теоретически пространство Галактики попытаться превратить в идеальный вакуум, в «полную пустоту», так сказать, то из одной последней, оставшейся в этой пустоте частицы, мы получим вс? ту же Галактику.
Так же, как нельзя вообразить, представить бесконечно малый объём и бесконечно большой объём, нельзя вообразить и пустоту в объёме, в том числе и пустоту между частицами. И при попытке прощупать, проанализировать пустоту, вакуум, мы сталкиваемся с тем, что пустоты нигде нет. Её невозможно не только создать, но и зафиксировать в природе, хотя бы на миг. По существу, нельзя, как говорится, «объять необъятное», нельзя поймать в свои сети то, чего нет. Иногда к пустоте относят то, что не является ею. Например, 0 и 1 в двоичном цикле тактового генератора: 0 – это не отсутствие сигнала (иначе компьютер перестал бы работать в этот момент, он бы перезагружался со скоростью тактового генератора – миллиарды раз в секунду), 0 – это обратный ток, от процессора к генератору, позволяющий сформировать сигнал низкого уровня LOW, который управляет решением задач, вычислительными процессами ничуть не хуже, чем HIGH.
Короче, если брать вс? вышеизложенное в расчёт, то окружающая Млечный Путь Вселенная, где рассредоточено множество галактик на определённом расстоянии друг от друга, также иллюзорна, как и элементарная частица… То есть Вселенная разнолинейно отражает одну и ту же галактику Млечный Путь в разных ракурсах, создавая е? многочисленные, не похожие друг на друга образы… Может быть, это не так? Ведь была бы тогда выявлена сразу математическая закономерность, уч?ные бы е? заметили. А, может быть, и так, может быть и заметили, как звёзды исчезают например, я просто в этом вопросе не разбирался.
XI. Механика гравитации
Давайте будем исходить из того, что между частицами пустоты нет. Между частицами есть разряженные поля частиц, границы равновесия, точки соприкосновения полей, «точки Лагранжа»; так называются точки, в которых силы взаимного притяжения уравновешивают друг друга. В этих точках есть невесомость, она не зависит от внешнего гравитационного поля (Земли, например), но эти точки отстоят отдельно друг от друга. Тем не менее, точно так же, как при помощи магнитов можно создать конструкцию, которая будет левитировать в гравитационном поле Земли, так же, я надеюсь, можно расположить и частицы, чтобы они левитировали.
Все частицы притягиваются друг к другу. Действует гравитационная сила притяжения. Отталкиваться они могут вдоль оси вращения, когда их винтовые соединения направлены в разные стороны. Но это уже электростатическое отталкивание. И притягиваться они могут тоже электростатически, однако гравитационное притяжение – это другое. Это другая сила, извините. Она действует постоянно и за счёт её постоянности можно создать левитирующую конструкцию частиц.
Все частицы притягиваются друг к другу, но поскольку сила притяжения со стороны соседних частиц действует на каждую частицу со всех сторон одновременно, ядра частиц не могут соединиться друг с другом, а поля вокруг ядер частиц наоборот, не могут разъединиться. Ядра частиц находятся в левитирующем равновесии. Кроме того, частицы имеют массу. А это значит, что при сжатии частиц быстро увеличивается их плотность и они сопротивляются сжатию. Так наблюдается действие ещё одной силы – силы отталкивания…
В общем, помимо электрических, есть ещё силы в природе, связанные с взаимодействием частиц. И в основном это гравитация.
В газе точки равновесия («точки Лагранжа») между частицами подвижны, поэтому газ постоянно движется во все стороны. В жидкости точки равновесия между частицами подвижны только в одной плоскости, а в твёрдом веществе эти точки неподвижны.
Состояние вещества, его характеристики, свойства определяются плотностью частиц. Таблица Менделеева распределяет частицы по плотности. Порядковый номер элемента в таблице Менделеева – будто бы зарядовое число атомного ядра, на самом деле это то место, которое элемент занимает по плотности, относительно других элементов.
Чёткая стабильность плотности на разных уровнях определяется резонансными частотами спектров излучения частиц…
То есть стабильность химических элементов, стабильность плотности частиц, которая не позволяет им из одной позиции таблицы Менделеева перескакивать в другую позицию, формируется резонансной частотой излучения частицы.
Любое вещество что-то да излучает. У этого излучения есть своя частота, как у радиопередатчика (только частота эта не относится к радиодиапазону), присущая частице частота очень стабильна, практически не меняется под действием внешних факторов (за редким исключением), что позволяет детектировать частицы по спектральному анализу химических элементов. В ходе спектрального анализа добавляется источник излучения, частоты складываются и разлагаются через призму в определ?нную палитру спектров. В общем-то спектральный анализ и говорит о том, что у каждой частицы есть своя частота, или набор частот излучения, присущий определённому типу частиц. А плотность, по-видимому, формируется частотой. То есть частота излучения поля частицы определяется по-другому как плотность частицы, как масса частицы в определ?нном объ?ме. Поэтому идентифицировать вещество можно как по спектру, так и по плотности.
XII. Объяснение «двойственности» природы света
Под «двойственностью» природы света подразумевают явления, характеризующие движение света, с одной стороны, как потока частиц, а с другой стороны как бег волн.
Хочу отметить, что свет и радиоволны отличаются только диапазоном частот, больше ничем. Из этого следует вывод, что диапазон электромагнитных волн видимого излучения 380—780 нанометров созда?т эффекты, не присущие диапазону радиоволн, и к таким эффектам можно отнести: давление света, прямолинейность света, непрозрачность для света большинства диэлектрических материалов. Давайте рассмотрим, что, как и почему происходит со светом (происходит то, что не происходит с радиоволнами).
В школе на уроках физики нам объясняли, что учёные пока не в курсе дела, как осуществляется передача света – потоком частиц (фотонов) или волной.
Так вот, на самом деле – ни тем и ни другим. И даже не «чем-то средним».
Все электромагнитные волны, попадая на приёмник, вызывают в нём ток. Видимый свет созда?т неплохой ток даже в органах зрения, что позволило природе создать их, органы зрения.
Это означает, что свет передаёт энергию ровно тем же способом, что и все электромагнитные «волны» – фотон (так назовём источник излучения в видимом диапазоне), оставаясь на месте неподвижно относительно окружающих его частиц, выстраивает ионную нить зарядов вдоль оси своего вращения, путём смены направления вращения с частотой 429—750 терагерц (эта частота относится к видимому диапазону).
Наиболее прозрачной для света средой, как можно заметить, является Космос, точнее – космическое пространство, космический вакуум… Это связано с тем, что в Космосе мало частиц, очень низкая плотность частиц, что означает, что они большие и лёгкие – свету не нужно много энергии, чтобы их раскрутить, поэтому лучи света почти беспрепятственно проходят гигантские космические расстояния, рассеиваясь при этом по всем направлениям. Свет проходит частицы космического вакуума почти без сопротивления, то есть раскручивает их не нагревая, в отличии от атмосферы, а тем более в отличии от воды, где на глубине лишь нескольких десятков метров свет поглощается полностью и стоит кромешная тьма. До дна морей и океанов солнечный свет не доходит!
Что созда?т прямолинейность света? Упругость, жёсткость ионной нити, хочется сказать «упругость волны», но это будет не правильно, свет – не волна.
А что созда?т упругость нити? Я уже отмечал ранее, что во всём диапазоне частот спектр видимого излучения – самый прямолинейный, его отклонить может только сильное гравитационное поле со стороны. Жёсткость, линейность света зада?тся частотой смены направления закрутки ионной нити, переменным напряжением закрутки с частотой 429—750 терагерц. Частота этого диапазона схватывает частицы вдоль с такой силой, что на эту линию буквально груз можно повесить – маленький грузик её не прогн?т. Что позволяет материализовать давление, оказываемое светом – сделать солнечный парус, и этот парус будет тащить за собой груз, как ветер.
Свет представляет собой самые твёрдые электромагнитные «волны» из всего спектра диапазонов. Фактическая твёрдость получается от ускоренной смены передачи напряжения в ионной нити. Радиоволны – они как бы не те, это мягкие «волны», извините, ионные нити, так правильно. Радиоволны не держат динамический удар со стороны, они гнутся, вьются туда-сюда…
Сейчас я вспомнил о такой особенности, на которую мало кто обращает внимание – в яркий солнечный день движение ветра в атмосфере останавливается. Боковое давление солнечных лучей тормозит ветер. Но стоит туче закрыть солнце – как тут же появляется ветерок. Разумеется, действуют и другие силы в атмосфере, которые создают исключения из этого правила. Но оно есть, согласитесь. Движение ветра – это движение частиц. А свет передаётся от одной частицы к другой прямолинейно. Таким образом в ионную нить поочерёдно встраиваются движимые ветром частицы. Это встраивание происходит со скоростью 300 тысяч километров в секунду – скорость электромагнитного взаимодействия намного больше скорости ветра, поэтому ветер не успевает сместить солнечные лучи, но в ветрянный день должно наблюдаться повышенное рассеяние солнечного света в атмосфере, солнце должно немного снижать свою яркость, для наблюдателя на Земле. Это можно проверить. Правда, облака такой проверке могут помешать, но не стоит всё списывать на облака.
Что создаёт давление света? Слаженное вращение ионной нити в видимом диапазоне частот смены направления закрутки ионной нити мы можем рассматривать как вращение твёрдого тела, внутри которого действует сила Кориолиса. Эта сила направлена перпендикулярно лучу, причём во всех направлениях, бьёт она то в одну, то в другую сторону, при смене направления закрутки ионной нити.
Получается, что основное давление, оказываемое светом, должно быть направлено перпендикулярно лучу, а не вперёд, по ходу луча, от источника света к приёмнику, в роли которого солнечный парус. Эта мысль может дать подсказку, какой формы должен быть солнечный парус – прямой или вогнутой, как параболическая антенна.