Оценить:
 Рейтинг: 0

Идеи по атомной механике. Открытие физической основы для теории всего

Год написания книги
2024
<< 1 ... 3 4 5 6 7 8 >>
На страницу:
7 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Но, получив представление об электричестве, мы постепенно начинаем понимать, что гравитация – это недостающее звено в описании электричества, в первую очередь свойств электрического напряжения.

Во-первых, отпадает вопрос, который я ставил до этого: заряды вращаются постоянно или только в момент передачи тока в проводнике? Заряды вращаются постоянно. «Холостой ход» вращения зарядов производит действие – заряды притягиваются друг к другу, это действие принято рассматривать как гравитацию (гравитационное притяжение зарядов друг к другу). Если бы не было этого действия, то заряды, находясь в покое, не вращались бы.

Кроме того, рассматривая причины коловратного вращения зарядов, я уже приходил к выводу, что электрический ток лишь усиливает притяжение между зарядами, что фиксируется как появление магнитного и электрического полей. Магнитное поле выглядит как реальное усиление гравитации в материале проводника, находящегося под воздействием электрического тока, а электрическое поле – это энергия вращения зарядов, то есть часть энергии притяжения переводится в энергию вращения, вс? по законам классической механики. На этом же принципе основана работа электромоторов, электрогенераторов…

Вся избыточная энергия притяжения зарядов переводится во вращение (избыточная – значит превышающая силу гравитационного притяжения между зарядами), а магнитное поле отбрасывается под углом, как производная от электрического.

Следствием постоянного, «нулевого уровня» вращения зарядов является сила гравитационного притяжения между атомами. Это механическая сила вкручивания зарядов друг в друга. Поскольку пустоты между атомами нет, сила эта от каждого атома направлена во все стороны в направлении соседних атомов, е? можно изобразить векторально, и просуммировать действие векторов, и тогда получится, что атомы притягиваются друг к другу в направлении максимальной плотности атомов, но при этом позади притягивающихся атомов всегда есть силы, удерживающие их от полного смыкания друг с другом. Даже если эти силы производятся менее плотными частицами, например частицами воздуха, они лишь позволяют более плотным частицам, например атомам металла, плотнее встать друг к другу, только и всего. И это тоже всё относится к классической, ньютоновской, так сказать, механике, а не к квантовой.

Во-вторых, если гравитация производится зарядами как электрическое напряжение, сила которого обусловлена лишь массой зарядов, то должны возникать помехи для этого напряжения. Что является помехой для гравитации? Ответ: расстояние. Сила гравитации убывает пропорционально квадрату расстояния. Поскольку заряды есть повсюду, это пропорциональная помеха. Она действует на все заряды во всех направлениях. Е? можно исказить только полным отсутствием зарядов в каком-либо месте, но поскольку природа не терпит пустоты, таких вещей в природе не наблюдается…

Статическое притяжение, как и магнитное, можно рассматривать как локальное усиление гравитационного поля, обусловленное наличием скопления зарядов (магнитное поле), ионных нитей высокого потенциала (статическое напряжение).

Подведу итог: гравитация – это вращение частиц, обусловленное их массой, плотностью. Чем выше плотность частиц, тем быстрее они вращаются, а чем быстрее они вращаются, тем усиленнее своими вихревыми полями они захватывают соседние частицы, эта сила захвата и есть гравитационное притяжение, земной вес и т. д.

Поскольку гравитация полностью идентична электрическому напряжению, гравитацию можно считать одним из видов электричества.

Отсюда возникают интересные моменты: что будет, если развернуть вращение в обратную сторону? Гравитация сменится антигравитацией? Заставить каждый атом вращаться в обратную сторону сложно, но вот вертолёт раскручивает всё разом в обратную сторону, и он побеждает гравитацию. Не нравится вертолёт – могу привести другой пример. На космических орбитах уже 20 лет работают спутники с двигателями без выброса реактивной массы, эти двигатели применяются для манёвров, для подъ?ма орбит спутников серии «Космос». Первый такого рода спутник официально назывался «Юбилейный», он был запущен в 2008 году. Принцип работы его двигателя довольно прост: вращается конусная болванка, она созда?т тягу в космическом пространстве, совершенно необъяснимую с точки зрения современной науки. Но сейчас, получив представление о гравитации, вы поняли, за счёт чего формируется эта сила?

Кстати, в Википедии о спутнике «Юбилейный» написана галиматья полная… Советую обратиться к материалам американской прессы о ман?врах российских военных спутников «Космос» – вот в той истерике вс? было выложено по-честному: описание манёвров, их производительность, малые размеры космических аппаратов «Космос» говорят о том, что они обладают неограниченным ресурсом для выполнения таких манёвров…

Очевидно, что создание военных спутников с необычными функциями всегда держится в секрете, поэтому информацию о «Юбилейном» как публиковали недостоверную, так и публикуют…

XX. Броуновское движение частиц

Все частицы находятся в гравитационном плену друг у друга. Поскольку между частицами нет пустоты, они не могут двигаться. Броуновским движением называют смещение точек равновесия между частицами (точек Лагранжа) в жидкости и в газе. Броуновское движение приводит к движению ОБЪ?МОВ частиц. Объ?мам легче преодолевать сопротивление в другом объ?ме, в воздухе например. Почему делаются неправильные выводы по броуновскому движению, мне не понятно. Пустите струйку дыма из сигареты – если бы каждая молекула этого дыма могла бы двигаться хаотически, со своим собственным направлением молекулярной скорости, то дым от сигареты не поднимался бы струйкой, он бы разлетался сразу в виде отдельных молекул и не был бы заметен, он бы растворялся на кончике сигареты.

Да, потом, поднявшись на определ?нную высоту в несколько метров, дым растворяется, но это происходит как раз из-за трения, сопротивления частиц воздуха, препятствующих движению всего объёма как единого целого.

Дым пронзает воздух обтекаемой струйкой, а не разлетается во все стороны прямолинейно – это тоже из-за трения движущихся частиц объёма дыма и частиц воздуха друг о друга.

Дым поднимается благодаря энергии температуры, до которой он нагрет, с этим вопросов в физике не возникает… Но объ?м постепенно распадается на вс? более мелкие объемы, а никак не молекулы!

Я уже отмечал, что оторвать одну молекулу от объёма также тяжело, как отделить одну снежинку от снега – связи мешают. Оторвать одну молекулу от объёма тяжелее, чем две враз, а две враз тяжелее, чем три враз… Чем меньше объём, тем он прочнее, стабильнее, из-за гравитационных связей между частицами объ?ма.

Под микроскопом броуновское движение выглядит как хаотичное под?ргивание и небольшое перемещение тв?рдых объ?мов частиц внутри жидкого объ?ма. Ещё раз повторю, что перемещение осуществляется из-за нестабильной локации точек Лагранжа между частицами жидкости. Эти точки (а не частицы) толкаются туда-сюда, тем самым они футболят тв?рдые объ?мы частиц, оказавшиеся в жидкости, и сами частицы жидкости толкаются тоже. Но не ядра частиц являются источником толчков и хаотических движений, а соскальзывание точек соприкосновения между частицами, слабые гравитационные связи между частицами жидкости, внешние силы, приводящие к толчкам, в том числе силы, находящиеся на значительном удалении от места эксперимента, ведь между частицами нет пустоты, а значит все массивы частиц находятся во взаимодействии друг с другом в той или иной степени. При ч?м тут движение молекул? Его нет.

См. один из примеров броуновского движения под микроскопом (https://youtu.be/OCcvDbPMNF8?si=Rox0N-yO_kSv961O).

XXI. Образование электрических искр

Вращение режущего инструмента на станке и вращение электрического заряда в проводе одинаково производит искры, разлетающиеся в стороны под действием центробежной силы вращения. Объясняю, как это происходит.

Электрические искры образуются в точке контакта проводников под напряжением через тонкую воздушную прослойку, диэлектрик, диэлектрический материал, очень тонкий изолятор.

При этом сначала на ничтожные доли секунды образуется электрическая дуга, а только затем уже искры, вследствие работы этой дуги по металлу-проводнику.

Любая дуга, даже очень тонкая, едва заметная, состоит из высокотемпературной плазмы. Диэлектрик, нагретый до состояния плазмы, проводит ток с минимальным сопротивлением, однако если электроды подвижны, как при сварке, то дуга может исчезать и появляться, что приводит к ещё большему образованию искр.

Процесс сварки очень сложен на самом деле, по-видимому он может сопровождаться одновременным появлением множества микроскопических дуг на конце электрода и образованием искр от этих дуг.

Стоит вспомнить, что расположение диэлектрика между двумя токопроводными пластинами представляет собой не что иное как конденсатор. Многие вещи устроены как конденсатор, но сварка работает в необычном для конденсатора режиме – в режиме пробоя диэлектрика.

В результате диэлектрик, то есть воздух, постоянно горит.

В момент пробоя конденсатор мгновенно разряжается. Баночный вообще переста?т существовать, поскольку он от пробоя взрывается, атмосферный конденсатор разряжается молнией, а сварочный процесс штатно идёт, возможно что разряд – заряд идут циклически с высокой частотой…

Разряженный конденсатор в первое мгновение пропускает ток беспрепятственно, но не потому, что ток проскакивает через диэлектрик, а потому, что ток заходит в диэлектрические обкладки конденсатора, накапливая заряд на пластинах.

В режиме пробоя возникает дуга, она поддерживает высокую температуру плазмы… Также в режиме пробоя распадаются ионизированные цепи, которые формируют максимально высокое напряжение в диэлектрическом слое конденсатора, когда он заряжен.

Каждое образование снопа искр сопровождается хлопком, а сама дуга гудит, вовсю проявляя механические свойства частиц, передающих ток.

Если рассматривать свариваемую точку под микроскопом с немыслимым разрешением, то мы увидим, скорее всего, нечто, похожее на два раскрученных «наждака», бьющихся друг о друга…

Заряды передают ток друг другу продольным вращением, а напряжение – осевым вращением.

Поэтому если приложить сварочный электрод к металлу, то он просто прилипнет. Это явление называется электромагнетизмом. Создаётся оно осевым вкручиванием зарядов друг в друга, как винта в гайку, только не такое жёсткое, как в закал?нном металле, это соединение больше похоже на текучую резьбу в сыром металле, по силе сцепления зарядов в осевом направлении. Такой вид сцепления зарядов не переда?т ток, он переда?т только напряжение. Поэтому при залипании электрода сварка не ид?т.

Чтобы сварка пошла, сварщику нужно произвести манипуляцию с электродом. Во-первых, нужно отвести электрод от металла на минимальное расстояние, чтобы поднять уровень сопротивления в точке сваривания с нулевого на низкоомный. Этого будет достаточно, чтобы ток пошёл и дуга появилась. Сопротивление появляется прямо в воздушной прослойке, воздух – это диэлектрик, имеющий высокое сопротивление току, но, как обычно, чем тоньше слой диэлектрика, тем ниже его физическое сопротивление проходящему току.

Низкоомное сопротивление в точке контакта да?т падение напряжения и появляется дуга, вследствие высокой температуры частиц разогретого током воздуха.

Этой дугой выбивается искра из металла, она выбивается из свариваемого металла и из металла на конце электрода.

Что значит «выбивается искра»? Этот процесс выглядит так: сильно разогретые трением электрического тока заряды вырываются из металла (разрываются их гравитационные связи, вследствие полученной ими тепловой энергии) и эти заряды получают толчок от проводника за сч?т центробежной силы вращения соседних зарядов. Эти соседние заряды цепляют своими энергетическими полями освободившиеся заряды и выбрасывают их из проводника.

Вот откуда берётся скорость у искр, обладающих какой-никакой, но собственной массой! Скорость материи из, казалось бы, неподвижно лежащего проводника!

Электрические искры – самое наглядное проявление вращения зарядов в проводнике, нагляднее просто некуда…

Вращение атомов невозможно разглядеть толком даже в электронный микроскоп, настолько оно мало, что электронный микроскоп фиксирует только сам факт вращения и его направление – по часовой или против часовой стрелки, что определяется как положительный заряд либо отрицательный.

Но скорость вращения зарядов вполне можно оценить, подставив под искру ладошку!

Не забывайте о технике безопасности: искры представляют серь?зную опасность для глаз, крупные искры могут вызвать ожоги на теле. Но просто подумайте, обратите внимание: из спокойно лежащего провода искры летят, как камушки из-под кол?с! То есть летят из-под чего-то, что вращается!

Будучи раскрученными и запущенными в полёт центробежной силой вращения заряда, кусочки металла с примесью нал?та ржавчины и т. п. вылетают расплавленными искрами, содержащими в себе, может быть, миллиграмм металла, может быть меньше.

Точно такие же снопы искр, только менее яркие, менее горячие, вылетают из-под работающего наждака, наждачного круга, болгарки, фрезы и т. п., потому что во всех перечисленных случаях, включая электросварку, идут одинаковые, с точки зрения механики, процессы трения металла о вращающиеся механические части, только в одном случае вращается режущий инструмент, а в другом случае заряд электрического тока.

ХХII. Всеволновая передача электромагнитных колебаний / настройка на мозг

Всеволновая передача может быть двух видов: переменная частота при фиксированном уровне напряжения (радиолиния с фиксированным уровнем напряжения, например) и переменная частота при переменном уровне напряжения – это самый сложный вариант. Технически ни первый, ни второй вариант никем в мире пока не был осуществлён.

Радиолиния передатчик-при?мник всегда строится на фиксированной частоте, на ней переда?тся сигнал, изменяющий сво? напряжение. Но передача настроения (именно настроения, а не мысли) от человека к человеку уж точно не работает на фиксированной частоте, иначе мы бы этот сигнал давно бы заметили, прослушивая все частоты.

В радиоэлектроннике не существует средств для обнаружения сигнала на несущем напряжении, тем более – сигнала без несущей частоты и без несущего напряжения, так как не вполне понятно, как создать нормальное при?мное устройство для таких видов сигналов (передатчик- то ладно, мы его создадим в любом виде, но ведь это комплексная аппаратура – передатчик и приёмник), и вообще можно ли передавать хоть какую-то информацию при помощи сигнала без несущей составляющей?
<< 1 ... 3 4 5 6 7 8 >>
На страницу:
7 из 8