Оценить:
 Рейтинг: 0

Идеи по атомной механике. Открытие физической основы для теории всего

Год написания книги
2024
<< 1 2 3 4 5 6 7 8 >>
На страницу:
3 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Диэлектрик переносит энергию вращения зарядов вдоль линии их вращения, поэтому Солнцу не нужен провод, чтобы доставить нам сво? тепло. Точнее сказать, физический провод есть – это ионизированная цепь. Но это не тот провод, который болтается на плече у электрика. Для того, чтобы диэлектрический провод работал, нужен космический вакуум, другой тип диэлектрика, например воздух, для этого не подходит – он рассеивает энергию беспроводной передачи.

Атмосфера Земли обладает достаточной плотностью, чтобы быть приёмником космического электромагнитного излучения, рассеивающим его в достаточной мере, обеспечивая при этом безопасность проживания живых организмов. Озоновый слой большой роли в обеспечении этого фактора безопасности не играет, так как он представляет собой продукт взаимодействий – нестабильный ионизированный кислород, часть ионизированной прослойки атмосферы, образуемой в результате взаимодействия молекул кислорода О

с космическим электромагнитным излучением.

Следует понимать, что тепло от Солнца поступает к нам именно механическим образом, от одного заряда к другому, пут?м вкручивания вращающихся полей зарядов друг в друга, что созда?т взаимное притяжение их и вращение всей получившейся ионизированной цепи зарядов в космическом вакууме.

А приёмником солнечной энергии является любое плотное тело, встающее на пути передачи солнечной энергии.

* * *

На основе этого представления становится понятна, например, причина равенства скорости света, скорости электрического тока в проводнике, скорости радиоволн и т. д.

Всё имеет одну и ту же скорость передачи энергии, поскольку созда?тся одним и тем же вращением зарядов! Только в диэлектрике вращение переда?тся вдоль оси вращения зарядов, а в проводнике – и вдоль, и поперёк, от одного заряда к другому. Передача энергии осуществляется механическим образом в обоих случаях. По факту, мы имеем дело с тем, что скорость передачи энергии зависит только от состояния элементарных частиц, а их состояние в обоих случаях одинаковое: они вращаются. Точка. Не имеет значения, сверху или сбоку один волчок цепляет другой – энергия от одного волчка к другому передастся с одной и той же скоростью.

Это и обуславливает равенство скоростей электрического тока в проводнике и передачи электрического напряжения в вакууме.

Если вы сильнее закручиваете цепь, вы увеличиваете её напряжение. И оно (изменившееся напряжение) со скоростью света переда?тся на другой конец цепи, где диэлектрик встречается с проводником и напряжение ионизированной цепи созда?т слабый электрический ток, от точечного ионизированного воздействия на любую из частиц проводника.

Что же такое электромагнитная волна?

Электромагнитная волна – это переменное напряжение ионизированной цепи в диэлектрике. При?мник, улавливая его, формирует сигнал…

Узнаёте?

IV. Механика радиопередачи

Частота радиопередачи зада?тся частотой смены направления тока на антенне передатчика. Так называемая «амплитуда волны» зада?тся сменой силы тока на антенне передатчика, для простоты можно сказать – сменой напряжения.

Чем выше частота, тем легче схватываются тонкие нити ионизации между передатчиком и при?мником на коротком расстоянии. Эти нити легко колеблются от помех, что созда?т ложное впечатление «радиоволны», огибающей препятствие. Да, препятствия огибаются ионными нитями, но в условиях многочисленных помех на Земле колеблются ионные нити хаотически, и если их при этом не спутывает в узелки и не разрывает после этого спутывания, то сигнал не прерывается.

Не связанные ионные нити, идущие от антенны, колеблются подобно сильно наэлектризованным волосам девушки.

А волна – это упорядоченное колебание, то есть колебания с равными промежутками, заданными частотой. Посмотрите на речную или морскую волну – там нет хаотических колебаний, там волна. В радиопередаче «волна» зада?тся колебанием силы тока на антенне, что переда?тся колебанием напряжения на нити ионизации. Чтобы при?мник смог поймать смену напряжения нитей ионизации и превратить их в ток на своей антенне, он должен формировать свои нити ионизации, притягивающие отрицательными концами положительные нити ионизации передатчика, при?мник должен делать это на той же частоте, что работает передатчик. Так формируется «прослушивание эфира». Сигнал на антенну приёмника поступает в виде смены напряжения на нитях ионизации, чем слабее напряжение, тем меньше ток на антенне при?мника. Все помехи при радиопередаче формируются самим при?мником. Если его питание плохо стабилизировано, то на принимающей антенне возникает смена напряжения от при?мника, которая и созда?т помехи. Радиопередатчик помех создавать не может. Он переда?т только то, что переда?т. Сигнал либо доходит до при?мника, либо не доходит. Чтобы сигнал увереннее доходил до при?мника, он должен быть сильным (большой ток на антенне передатчика создаст больше нитей ионизации), для этого нужно повышать мощность передатчика, но на наличие помех в сигнале регулировка мощности передатчика не влияет. На это влияют другие факторы формирования нитей ионизации на той же частоте.

Почему смена тока на антенне передатчика зада?т нужную частоту радиопередачи, но не созда?т помех? Потому, что при протекании тока по антенне заряды вращаются навстречу друг другу, и они создают равное количество нитей ионизации, направленных как к антенне, так и от неё. То же самое происходит на антенне при?мника. Каждый раз при смене направления тока происходит смена направления вращений нитей ионизации, но нити не разрываются при этом, они лишь меняют направление вращения, а значит передачу напряжения от передатчика к при?мнику с заданным периодом частоты периодически ведут на противоположную сторону. Это выглядит запутанно, согласен, но давайте не забывать, что сигнал радиопередачи формируется изменением уровня напряжения, а смена тока и направления напряжения на нитях ионизации происходит попарно, нити ионизации уравновешивают друг друга подобно тому, как это происходит в бытовой сети переменного тока 220В/50 Гц: пока по одному проводу течёт плюс, по другому теч?т минус, а через две сотые доли секунды – наоборот. Это тоже сложный процесс передачи тока и напряжения, и его не так-то легко объяснить. Нужно просто запомнить, что в какую бы сторону ни вращались шестер?нки механизма – они в любом случае создают энергию передачи, и эта энергия мгновенно принимается на другом конце провода, а в случае радиопередачи – она оказывается на при?мнике.

V. Механика времени

Что такое длина волны 300 тысяч километров при частоте 1 Гц? Это расстояние, на которое успевает распространиться электромагнитное взаимодействие в ионной нити за 1 секунду, то есть расстояние, на котором частицы вступают в механическое вращательное взаимодействие друг с другом ровно через 1 секунду. Кстати, из этого определения складывается размерность секунды, как основной физической единицы измерения времени, но мы сейчас не столько о времени, сколько о механике взаимодействия частиц, позволяющей дать точное определение константе времени, благодаря, по-видимому, постоянной скорости процесса взаимодействия, связанной, как мне представляется, с равной инертностью элементарных частиц, а значит с их равными размерами. Если бы элементарные частицы отличались друг от друга по габаритам, то так называемая скорость света не была бы постоянной, из-за разной инертности частицы вступали бы во взаимодействие друг с другом на одном и том же расстоянии с разной скоростью. И не было бы такой математической размерности, как время.

Основные свойства элементарных частиц в том, что они являются точным подобием друг друга, как бы далеко друг от друга они ни находились; у них не выявляется различий; они не изнашиваются, не стареют, то есть сколько бы времени ни прошло, они всё те же. Эти странные для частиц свойства указывают на то, что вся Вселенная состоит из бесконечного множества зеркальных отражений, словно одной и той же частицы; раст?т Вселенная за счёт увеличения числа этих отражений. Геометрическое пространство Вселенной складывается как в калейдоскопе – оно регистрируется нами как бесконечное, разнообразное, не повторяющееся, но при этом если разобрать калейдоскоп – в нём только несколько цветных камушков (штук 5, наверное, точно не помню) и зеркала по периметру. Во Вселенной роль калейдоскопных камушков играет таблица Менделеева, а е? форма связанности бесконечно большого с бесконечно малым (проявляемая в однотипности элементарных частиц) играет роль калейдоскопных зеркал, то есть эта форма структурно присутствует в каждом физическом элементе в виде заряда, вращения. Каждый заряд, частица, вращение – это линзированное отражение энергетического поля Вселенной, бесконечно малое отражение бесконечно большой Вселенной, подобно тому как в каждой капле воды отражается небо, солнце, окружающий мир.

Это линзированное отражение создаёт эффект зеркала, на основе которого формируется бесконечно большая и разнообразная Вселенная из бесконечного множества однотипных частиц, складываемых друг с другом по-разному, разными способами, но в соответствии со структурным порядком, обозначенным в таблице Менделеева.

В «Механике ионизации» я посчитал, что нити ионизации в рентгеновском и гамма-диапазоне изгибаются, обходя Землю стороной вдоль линий магнитного поля Земли. Но вот что интересного не заметил. Наиболее прямолинейными являются нити ионизации в видимой части спектра, в диапазоне 429—750Тгц. Эти нити являются наиболее упругими и прямолинейными, только сильная гравитация может едва заметно отклонить их.

Упругость нитей ионизации формируется частотой смены скручивания. Явление упругости электромагнитных волн играет особо заметную роль в диапазоне радиоволн. Чем короче радиоволна, тем хуже она обходит препятствие. В мо?м представлении становится понятно, почему это происходит. Длина волны на самом деле характеризует плотность смены направления закручивания нитей ионизации. Чем чаще меняется направление закрутки, тем плотнее получается ионизированная «косичка». А чем она плотнее, тем она прямолинейнее, прочнее, е? сложнее согнуть различным помехам… Радиоволны высокой частоты могут обжечь, если их много, но это если прикоснуться к антенне очень мощного передатчика. А вот на расстоянии радиоволны не жгут.

Посмотрим, что там у нас по таблице выше радиоволн – выше по частоте. Инфракрасное излучение! А вот это уже те волны, которые жгут по полной. То есть вступая в механическое взаимодействие с телом человека, например с рукой, поднес?нной к костру, они её сверлят – тело сопротивляется, получается трение и как следствие выделение тепла в точке воздействия ионизированной нити на тело. То есть частота инфракрасного излучения такова, что она делает ионную нить прочной, упругой, прямолинейной, как сверло.

А радиоволны представляют собой мягкие ионные нити, однако чем выше по частоте радиоволны, чем ближе они к инфракрасному диапазону, тем сильнее их механическое воздействие на тела. Прогресс идёт в сторону увеличения частоты радиоволн – забивая одни диапазоны, мы выходим на другие, более ёмкие… Но вполне допустима мысль, что есть люди, которые ощущают на себе влияние радиоволн диапазона 5G. Если клетки тела настолько чувствительны, что могут вступать с радиоволнами в механическое взаимодействие, то можно проверить, так ли это: приближение к радиопередатчику, например к домашнему роутеру в диапазоне 5G должно ощущаться такими людьми физически. Однако переключение того же роутера в диапазон 4G должно заметно ослаблять воздействие радиоволн на испытуемого человека (а ещё лучше – взять ИК-пульт от любого телевизора, в ИК-диапазоне частота передаваемого сигнала на порядки выше, чем в 5G). И если испытуемый безошибочно угадывает, в каком диапазоне работает передатчик – значит, он чувствителен к 5G. А если не угадывает, то проблема в самом испытуемом.

Давайте посмотрим, что там у нас дальше, за инфракрасным диапазоном. Видимое излучение! Свет! Вот это да! Передачу сигнала на расстояние можно вести источником света? Конечно, можно. И это делается уже давно. Но, в отличие от радиоволн, и даже от ИК-сигнала, источники света действительно могут мешать людям там, где они не нужны.

Понимание электричества укладывается в рамки обычной механики, как дважды два – четыре.

VI. Звуковые волны

То, что принято называть электромагнитными волнами – это колебания напряжения в диэлектрической среде, передающиеся по нитям ионизации. По сути своей они не являются волнами, так как не соответствуют свойствам волн в полной мере (им должно быть дано другое определение, чтобы всё встало на свои места). Колебания напряжения могут быть представлены в виде волн только условно, на графике. Например, на экране осциллографа.

А в жизни волны существуют, но работают они иначе (не так, как «электромагнитные волны»). Есть видимые – бегущие по поверхности воды, есть невидимые, но в любом случае волны образуются в результате чередования промежутков сжатия и расширения вещества, или уменьшения и увеличения давления вещества. Кстати, волна на поверхности воды образуется за счёт поперечных волн давления всего объёма воды, находящегося под волной. Колебания сжатия и расширения – это нормальная ситуация для любой среды. А любая материя – твёрдая, жидкая, газообразная – является как раз средой для распространения волн. И волны, представляющие собой именно волны, действительно распространяются в любой среде. И распространяются именно так, как положено волнам. Волны имеют свойства, присущие исключительно волнам. Например, они имеют разные скорости распространения в разных средах, не переносят энергию, в отличие от «электромагнитных волн»… Называются эти волны «упругими», а иногда – звуковыми.

Скорость звука, по Википедии – это всего лишь скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах).

VII. Интерференция, дифракция волн, опыт Юнга (опыт со щелями перед экраном)

В этом небольшом фильме (https://ridero.ru/link/P12-3iBRW8N0FohrhXHHU) https://youtu.be/3fHRTyjPGIQ?si=QaICTyvDJBtFV5AE (https://youtu.be/3fHRTyjPGIQ?si=QaICTyvDJBtFV5AE) честно обозначается проблема, о которой я хорошо помню: «электромагнитные волны» ведут себя подобно волнам, хоть и запускаются как частицы, но интерферируют перед экраном как волны, а при попытке понять этот парадокс они словно издеваются: усмиряются и снова становятся частицами. Особенно интересен опыт с одним электроном (с одним зарядом), его-то мы и разберём.

Хороший фильм об опыте Юнга

Итак, при запуске электрона вылетает не шарик, а запускается вращение, за которым тут же выстраивается ионная нить зарядов. До этого, чтобы не усложнять, я представлял себе ионные нити в виде тонких прямых линий, но глядя на эксперимент, да и вообще глядя на то, как рассеивается любой луч света, даже сконцентрированный параболическим отражателем (рефлектором), мне придётся немного расширить сво? представление: конечно же, ничто не мешает ионным нитям рассеиваться, то есть разделяться, разветвляться в пространстве на множество ионных нитей, особенно если они сформированы на низкой частоте, как радиоволны, из одной точки пространства они могут распространяться во все стороны одновременно и в результате ослабевать, по мере удаления от источника излучения.

А при столкновении с препятствием, ионные нити отражаются от него. Угол падения (светового луча на зеркало) равен углу отражения. Именно равенство углов (падения и отражения) говорит о том, что ионные нити представляют собой тонкие прямые линии. Не волны. Но если препятствие мелкое, например пылинка в воздухе или щербоватый край щели, как в эксперименте, то углов отражения получается несколько и все они направлены в разные стороны, как проекции луча. Именно из-за этого рассеяния луча происходит дифракция и интерференция образовавшихся лучей друг с другом, то есть повторное пересечение этих лучей и образование нескольких линий света на экране вместо ожидаемых двух. В фильме ведь правильно отмечено: исследователи думали, что частицы как-то соударяются друг с другом, и чтобы исключить эти соударения, решили использовать в опыте «один электрон».

Но один-то никак не получится, поскольку заряд (называемый у них «электроном») неизбежно ионизирует ряд частиц за собой. Он не выстреливается куда-то и не летит как шарик, в опыте Юнга ускорителем создаётся точечная вихревая закрутка, которая увлекает ряд частиц за собой и образуется ионная нить вращения.

Именно потому, что зарядам не надо никуда лететь, им достаточно развернуться на месте, соединиться друг с другом полюсами вращения (подобно маленьким магнитикам), ионная нить вращения образуется быстрее, чем любое передвижение вещества – со скоростью света. Если бы «электрон» летел со скоростью света как частица – он бы встречал на сво?м пути гигантское сопротивление со стороны других частиц и быстро замедлялся бы, но никакого сопротивления и наблюдаемого замедления скорости «электрона» не происходит, даже в металле, в проводнике, так называемый электрон не испытывает сопротивления. Подумайте: многократное увеличение плотности среды, в которой якобы движется «электрон», не оказывает абсолютно никакого влияния на скорость «электрона». Этот факт говорит о том, что «электрон» никуда не движется, он стоит на месте и передаёт вращение, как заряд, соседним частицам, а те передают следующим, по цепочке. И на пути передачи вращения могут быть некоторые препятствия, которые рассеивают луч вращения в разные стороны, то есть помехи, приводящие к рассеиванию луча.

Интерференционная картина, которая получается на экране, как мы видим, не ровная, в отличии от интерференционной картины, созданной настоящими волнами, бегущими по воде. Если шербинистые края интерференционных щелей шлифануть или сделать их идеально гладкими, то интерференционная картина сильно изменится. При определ?нных условиях она может даже исчезнуть. Именно это и происходит в эксперименте, когда они пытаются «поймать электрон», чтобы понять, через какую же щель он якобы пролетает, интерференционная картина полностью исчезает. Точнее, она выглядит так, как если бы через две щели пролетели «шарики».

Почему исчезает интерференционная картина? Чтобы «поймать электрон», чтобы зарегистрировать его якобы пролёт через щель, нужно создать на выходе из щели электромагнитную ловушку, то есть заряд с положительным вращением – электрон с отрицательным вращением буквально ввинтится в него и своей энергией передаст детектору сигнал: «я здесь!» Конечно же, это сделает не движущаяся частица, а ионная нить, образуемая вслед за первым зарядом. А поскольку за одной из щелей стоит детектор, втягивающий в себя ионные нити как магнит (другого способа регистрации «электронов» просто не существует, это же электронный микроскоп в том или ином виде), интерференционная картина пересечения рассеянных лучей неизбежно должна исчезать в таком случае, и никакая магия с мнением экспериментатора здесь ни при ч?м, равно как и другая мистика – всё это плод воображения.

Поменяйте условия эксперимента, если хотите – и вы поймёте, что на «электрон» оказывает влияние не ваше наблюдение, а ваш способ регистрации.



VIII. Механика связей

Объ?мы частиц в вакууме увеличиваются. Только так можно объяснить беспрепятственное прохождение электромагнитных волн в космическом пространстве: давление и плотность частиц в вакууме снижаются почти до нуля, уменьшается их количество, но оставшиеся занимают весь освободившийся объ?м. Таким образом в вакууме разряжается не пространство, а сами частицы. Иначе они не могли бы обеспечивать полноценное механическое взаимодействие друг с другом, что мы наблюдаем во Вселенной, беспрепятственное прохождение электромагнитных волн.

Свет далёких звёзд, скоплений, галактик доходит до нас. Сам этот факт означает, что не фотоны летят со скоростью света, а взаимодействие между частицами распространяется со световой скоростью, и реагирует это взаимодействие на любые препятствия, помехи, которые попадаются на пути, рассеянием. По этой причине скорость взаимодействия нигде не снижается, несмотря на сопротивление среды. Увеличивается только площадь рассеяния.

Движущийся фотон не способен реагировать на сопротивление среды, не снижая скорости передачи энергии. Фотон, стоящий на месте, способен передавать нам свою энергию света вращением.

Сопротивление среды возникает при любом способе движения, в том числе и при вращении, но при вращении оно приводит лишь к рассеянию света, а не к уменьшению скорости распространения света в космическом пространстве. О механизме рассеяния с сохранением скорости передачи энергии рассказано в главе VII.

Если предполагаемый процесс движения никак не реагирует на сопротивление среды, то значит нет предполагаемого процесса движения. Взрослому учёному не стоит уподобляться в своих представлениях детям.
<< 1 2 3 4 5 6 7 8 >>
На страницу:
3 из 8