Оценить:
 Рейтинг: 0

Идеи по атомной механике. Открытие физической основы для теории всего

Год написания книги
2024
<< 1 2 3 4 5 6 ... 8 >>
На страницу:
2 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Хочу предупредить: у меня никогда не возникало мысли дискредитировать чь?-либо учение, принять позу противника чьих-либо теорий. Наоборот, я хочу, чтобы любой школьник понимал законы квантовой физики, в том числе и в традиционной форме подачи, демонстрируемой советскими учебными фильмами на эту тему, для этого познания применяя законы классической механики, к озвученным теоретикам образам, и используя те подходы, о которых я рассказываю в своей книге.

Также я не отрицаю и не отвергаю ничего сущего в экспериментах, ибо на этом строится любая теория! Моя задача только в том, чтобы раскрыть то, что сокрыто под теми или иными формулировками, терминами, исходя из законов классической механики. Если же при этом вскрываются очевидные заблуждения, ошибки в образовательной интерпретации экспериментов и результатов научных исследований, то нет вины моей в этом; я стараюсь избегать не нейтральных суждений на тему чьих-либо ошибок, так как это было бы отвлечением, не относящимся к существу поднимаемых мною вопросов. Для меня моя задача в том, чтобы подсказать дорогу слепому, рассказать, что он нащупал. Ведь то, что нащупал слепой, является истиной, а то, что он не смог объяснить правильно, является виной его зрения. Я перебирал множество вариантов, чтобы разгадать квантовый ребус, ведь и сам-то не обладаю оптическим инструментом, способным увидеть взаимодействия и поведение элементарных частиц на атомном уровне, но мне приятно, что я вс?-таки разгадал, надеюсь и вам будет приятно прочесть мою разгадку.

Рассчитываю на то, что получу от вас одобрение и включу ваше экспертное заключение в содержание предлагаемой вашему вниманию книги: «СОСТОЯНИЯ ЧАСТИЦ. МЕХАНИКА ЗАРЯДОВ».

Андрей Николаевич Чемезов

P. S. Мне 47 лет. В 2017 году Российская академия наук провела экспертизу моих идей по коммерческому освоению Луны, ответ был получен мной от вице-президента РАН академика Валерия Григорьевича Бондура – письмо из РАН прикреплено к этому письму. Работа над тем проектом перешла в практическую плоскость. Сейчас я испытываю стенд: <…>

В следующем письме я планирую передать Валерию Григорьевичу ссылку на подключение к управлению через интернет телеуправляемым луноходом массой в несколько десятков граммов. Ссылка на подключение и управление в режиме он-лайн. Отработав управление на стенде, я хочу отправить доработанную и испытанную модель на Луну вместе с международной лунной экспедицией «Чанъэ-8», приглашение от которой для иностранных участников открыто до 31 декабря 2023 года. Моя цель – подключение к луноходу через интернет и поочер?дная эксплуатация его допущенными к вождению на Луне водителями в порядке живой международной очереди. О схеме подключения к луноходу на Луне с использованием уже имеющегося на китайском луноходе или на китайской платформе «Чанъэ-8» канала передачи данных я расскажу в следующем письме.

Конец письма. Ответ РАН опубликован на странице 132 в этой книге.

МЕХАНИКА ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ

Андрей Чемезов. 26 марта 2023

Все загадки электричества объясняются только механикой.

I. Механика ионизации

Если вы не будете представлять себе механику притяжения и отталкивания зарядов, то будете действовать вслепую и эдак никогда не закончите с экспериментами. Это нужно объяснять ещё в школе. Заряд означает вращение. Одно и то же вращение, если смотреть на него сверху и снизу, положительное и отрицательное. Поэтому с большинства частиц регистрируется и положительный, и отрицательный заряд. Такие частицы называются диполями. Ионы – это либо положительные, либо отрицательно заряженные частицы, точнее сказать они регистрируются как либо положительные, либо отрицательные. Почему? Потому, что они представляют собой сильно вытянутое вращение, подобие тонкой спирали, струны, на одном конце которой всегда будет положительный заряд, а на другом конце отрицательный. Но! Все частицы соориентированы гравитационным полем, а гравитационные поля есть везде: и на Земле, и в космосе, и у Солнца, и у планет. Поэтому ориентация частиц почти никогда не меняется, и возникает упорядоченная регистрация ионов как либо положительных, либо отрицательных зарядов. Как правило, положительные и отрицательные ионы соседствуют на небольшом расстоянии друг от друга, но иногда это расстояние может быть значительным, а в космических масштабах – очень значительным.

Положительные заряды притягиваются к отрицательным по той причине, что их поля вкручиваются друг в друга, верх вращения отрицательный и низ вращения положительный находятся на одной оси не только внутри одной частицы, но и в паре частиц, если они находятся одна над другой.

Так механически выглядит притяжение и отталкивание зарядов. А ионы – это концы цепочки зарядов. Молния мчится туда, где нить зарядов длиннее, потому что сама молния несёт в себе концентрацию положительных ионов. Чтобы поймать положительный солнечный ион, нужны концы ионных нитей, состоящие из отрицательных зарядов. Два противоположных знака сцепятся друг с другом механически и появится электрический ток. Так выглядит механизм ионного взаимодействия.

Следует учитывать, что сильные ионы образуются там, где электрический ток не может течь, то есть в диэлектрике, а исчезают там, где электрический ток начинает течь, то есть в проводнике. Для образования ионов нужно электрическое поле. Оно упорядочивает диполи, как и магнитное поле (магнетизм – это вообще тень электричества, притяжение и отталкивание электрических зарядов называется магнетизмом, а заряды всегда либо притягиваются, либо отталкиваются, поэтому магнитное поле всегда стоит рядом с электрическим, как его тень). Диполи притягиваются друг к другу своими разноименными зарядами и в электрическом поле образуется длинная заряженная нить, которая с одного конца регистрируется как положительный ион, а с другого конца как отрицательный ион. Но если мы рассматриваем тот же самый процесс в твёрдом веществе – диэлектрике, то там всё упорядоченно и хорошо видно, как последовательно соединённые электрические цепи диполей дают противоположного знака заряды на разных концах диэлектрика. Причём последовательное соединение зарядов-диполей да?т рост напряжения (так же, как если вы будете соединять последовательно батарейки, например типа AG), а параллельное сложение цепей диполей да?т рост тока в проводнике. Оба этих фактора принимаются во внимание при проектировании обкладок конденсаторов; ёмкость конденсатора зависит от площади диэлектрической прокладки в нём, а напряжение, которое способен выдержать конденсатор – от толщины этой прокладки.

Электрический ток существует только в проводнике, а электрическое напряжение существует и в проводнике, и в диэлектрике. При заряде конденсатора дипольные цепи в диэлектрической прокладке конденсатора увеличивают свою длину, а при штатном разряде конденсатора они плавно уменьшаются. При пробое конденсатора они распадаются, происходит мгновенный разряд, что иногда выглядит как взрыв конденсатора.

Если в качестве диэлектрического слоя брать газ или космический вакуум, то в н?м получаются длинные, вытянутые нити зарядов, которые чертыпыхаются как волосы девушки. Такие заряды обладают колоссальной энергией в космосе, но не за счёт скорости движения от источника излучения, а за сч?т скорости вращения самой цепочки зарядов. Ведь заряды обладают массой, которая, при вращении, даёт кинетическую энергию. Получается, что ионная нить обладает кинетической энергией вращающихся в ней зарядов. Эта энергия формирует нить и передаётся нитью со скоростью света с одного конца нити на другой. В роли приёмника окажется любое физическое тело, которое встанет на пути передачи энергии этой нитью. Что, конечно, очень плохо, как для электроники, так и для человека в космосе.

Движение и вращение небесных тел, космических объектов, может как усиливать, так и ослабевать воздействие ионных нитей на них.

Чем быстрее вращаются ионные нити зарядов, тем мощнее воздействие ионизированного и электромагнитного излучения.

Если бы радиация и другие виды электромагнитных излучений состояли бы из потока движущихся высокоэнергетических частиц, то, учитывая скорость предполагаемого потока, а она равна скорости света, Солнце на глазах теряло бы массу. К тому же, поток должен где-то заканчиваться, бить по планетам, как из брандспойта, по Марсу, по Луне – там что, постоянно раст?т насыпь, образуемая потоком солнечных частиц? Нет, конечно же, ничего подобного не наблюдается. На Луне есть кратеры, в которые никогда не заглядывает Солнце. И эти кратеры ничем не отличаются от обычных.

Можно сказать, что все регистрируемые космические ионы имеют хвосты, которые представляют собой заряженные нити энергии. Вблизи Солнца вдоль этих нитей энергии текут потоки солнечного вещества – вещество притягивается к ионным нитям! Вещество формирует солнечную корону.

То же касается и вещества комет, подлетающих к Солнцу. За кометами тянутся длинные хвосты.

То же касается и вещества комет, подлетающих к Солнцу. За кометами тянутся длинные хвосты. Часть ионных нитей отрывается от Солнца, или смещается друг к другу под действием магнитного притяжения, образуя замкнутые линии солнечной короны

Часть ионных нитей отрывается от Солнца, или смещается друг к другу под действием магнитного притяжения, образуя замкнутые линии солнечной короны, наблюдаемые в телескоп за счёт притягиваемого к ионным нитям вещества.

А вблизи поверхности Земли аналогичные ионные нити, но размерами намного меньше. Чтобы приподнять их, используют молниеотвод. Верхний конец молниеотвода насыщается ионными нитями, растущими от земли, от заземления, поэтому молния цепляет их и бьёт в молниеотвод, а не абы куда.

II. Механика проводимости (электрического тока в проводнике)

Заряд – это вращение.

Вращение от заряда к заряду может передаваться как вдоль, так и поперёк. Вдоль (по осевой линии вращения) передаётся только напряжение. Поперёк (перпендекулярно линии вращения) переда?тся ток и напряжение.

Продольное вращение образует ионные нити зарядов в газообразной диэлектрической среде.

В тв?рдом диэлектрике продольное вращение образует последовательные электрические цепи, состоящие из отдельных зарядов, как из маленьких батареек размером с атом или с молекулу.

Что касается жидкой среды, то нужно иметь о ней представление, соответствующее её свойствам. Заряды в жидкости не имеют вертикальных молекулярных связей, этим они подобны зарядам в газе, но имеют горизонтальные молекулярные связи, этим они подобны зарядам в тв?рдом веществе. Горизонтальные молекулярные связи в жидкости образуются благодаря тому, что все частицы в жидкости соориентированы магнитным полем планеты, я так полагаю исходя из наличия круговых океанских течений. По сути, жидкость – это тончайшие слои тв?рдого вещества, наложенные друг на друга. Если брать эти слои в отдельности, то они выглядят как пл?нка, ими созда?тся поверхностное натяжение воды, например, оболочка пузырей, пены, а если брать эти слои вместе, то они начинают продольно скользить, как пачка листов бумаги, образуется текучесть жидкости. Но нужно учитывать, что эта текучесть возможна только под действием гравитации планеты, в невесомости жидкость не теч?т. В невесомости жидкость образует пл?ночные пузыри (водяной шар в невесомости – это множество пузырей, вложенных один в другой). Уберите земную гравитацию, и вы сразу пойм?те, что представляет собой жидкость – это одномерный тв?рдый материал, наподобие пл?нки, связанный в одной плоскости, а не в объёме, как привычное нам твёрдое тело.

Поскольку молекулярные связи в плоскости сильны, материал замыкается в пузыри. Он и в условиях гравитации планеты стремится это делать, но тут у материала появляется такое свойство как текучесть, и он меняет форму, становится жидкостью. То есть, повторю, жидкость может существовать только в условиях гравитационного действия планеты, под действием гравитации тв?рдый, многослойный одномерный материал с электрическими зарядами на разрывах, начинает течь.

А вот многомерный твердый материал в условиях гравитации не теч?т, он сохраняет целостность своей структуры, геометрию которой гравитация чуть-чуть нарушает, что характеризуется таким свойством как вязкость.

В диэлектрике оси зарядов подвижны. Именно поэтому они могут менять ориентацию под действием электрического поля и выстраиваться в последовательно соедин?нные электрические цепи.

В проводнике оси зарядов не подвижны. Именно поэтому они не меняют ориентацию под действием электрического поля и проводят электрический ток. Каким образом это происходит? Как выглядит механика проводимости твёрдого тела? Всё очень просто. Заряды расположены параллельно друг другу. Их удерживают в таком состоянии силы внутриатомного притяжения. Заряды вращаются (само слово заряд в физическом смысле уже означает вращение; когда я говорю, что заряд неподвижен, я имею в виду фиксированное вращение). Заряды вращаются, увеличение скорости вращения приводит к тому, что диаметр зарядов увеличивается, они входят в механическое сцепление друг с другом и начинают передавать свою энергию вращения другу другу как шестерёнки в зубчатом механизме. Только сцепление происходит не зубцами, а вихревыми полями. При достаточной жёсткости сцепления энергия тока проходит по проводнику почти без потерь, со скоростью света. Свойства проводника на скорость тока не влияют. Если вы возьмёте ряд идеальных шестерёнок, у которых нет никакой подвижности, кроме осевого вращения, то у вас получится такая же мгновенная передача энергии, от первой шестерёнки к последней.

Но самое интересное – как эти шестерёнки вращаются? Подумайте – как? Они вращаются навстречу друг другу! Таким образом через один вы будете регистрировать положительный и отрицательный ионный заряд. И вот, какой-то умник, прошу прощения, снимая эти показания, решил, что данная картина подтверждает движение электронов в цепи электрического тока и даже определил скорость их движения – несколько миллиметров в секунду (не знаю, может рука тряслась у него). Но что на самом деле зарегистрировал прибор? Он зарегистрировал вращения зарядов по часовой и против часовой стрелки через один. Детектировать на таком микроскопическом уровне можно только вращение. Именно поэтому штука, которая детектирует вращение, называется электронный микроскоп. Она ничего не видит. Она только чувствует иглой направление статического тока (заряда) к игле и от иглы, и в зависимости от этого направления определяет, положительный или отрицательный заряд оказал воздействие на иглу микроскопа. Всё остальное уч?ные домысливают и дорисовывают сами, пытаясь интерпретировать процессы, происходящие в проводнике. Они делают это c некоторой долей наивности, поэтому комментировать их интерпретации довольно тяжело.

Сопротивление току у проводника тем меньше, чем меньше «люфт и шатание шестерёнок» под действием электрического поля, то есть чем меньше ось вращения заряда отклоняется от вертикали, тем выше проводимость тока у проводника. А отклоняется она от вертикали потому, что плюс притягивается к минусу! В диэлектрике отклонение максимальное, что приводит к стыковке зарядов друг с другом под действием электрического поля в последовательные цепи и вместо проводимости электрического тока они дают собственное напряжение цепи, что фиксируется мультиметром как падение напряжение на проводе.

Идеальных проводников не бывает, так же как не бывает идеальных диэлектриков, любой материал – это что-то среднее между тем и тем.

В «Механике ионизации» я отметил, что напряжение цепи диэлектрика в конденсаторе определяется длиной этой цепи, а ток, который может дать конденсатор, зависит от количества этих цепей. Так вот, ток конденсатором выда?тся за счёт вращения цепей зарядов в диэлектрике, так же, как в проводнике. Это вращение подхватывается электродами конденсатора, которые состоят из токопроводного материала, и далее ид?т по проводнику в цепь.

Интересно, что максимальная плотность тока всегда наблюдается на поверхности проводника, плотность тока падает в равной мере как к центру проводника, так и во внешнюю среду от поверхности проводника, по крайней мере такое утверждение существует в книгах по электрике. Это значит, что энергия вращения никак не связана с материалом проводника, она только переда?тся им. Но чем выше качество материала как проводника – тем выше коэффициент передачи тока. Как, впрочем, и в любом маховике – вращением запасается энергия, она не связана с какими-то там блуждающими электронами, обьем энергии зависит только от скорости и объёма вращения. Ну, и от плотности массы маховика, если быть точным.

Чем толще провод, тем больше тока он проводит.

Чем массивнее маховик, тем больше энергии вращения он запасает.

Передача напряжения от толщины провода практически не зависит. Но чем больше напряжение, тем дальше распространение тока от поверхности проводника (по этой причине высоковольтные провода имеют более толстую изоляцию, препятствующую перетеканию тока на «облокотившиеся» на них проводники). Характер распространения тока указывает, во-первых, на длину дипольных цепей, участвующих в передаче напряжения, во вторых, указывает он на то, что дипольные цепи в проводнике расположены поперёк направлению тока, в-третьих такое положение дипольных цепей указывает на то, что они неизбежно будут ионизировать диэлектрический материал, примыкающий к проводу, в том числе воздух. И действительно, так оно и происходит.

Чем длиннее дипольная цепь в проводнике – тем больше напряжения она переда?т и таким же образом выстраивает соседнюю дипольную цепь. Поперёк току.

Но если дипольная цепь в проводнике выстроится вдоль направления тока, то есть вдоль проводника – она будет диэлектрической, и будет препятствовать прохождению тока через проводник.

Таким образом подвижность зарядов в проводнике вс?-таки есть, но это небольшая подвижность вдоль оси, возникающая при изменении напряжения, в отличии от диэлектрика, где заряды настолько подвижны, что их ось вращения меняет угол на 90 градусов; подвижность в проводнике зарегистрировать никак не удастся.

Что касается жидкости, то там всё гораздо запутаннее, чем в тв?рдом теле. Идеально чистая вода является диэлектриком – если между слоями воды нет никаких токопроводных примесей, то ток не проводится ею (дистиллированная вода). Если же примеси есть, то возникает ионная проводимость жидкости, которая достигает максимума в электролите.

III. Механика электромагнитных волн

Каким образом Солнце согревает нас? Что является проводником энергии от Солнца? Что именно представляет собой тот физический материал, который переносит энергию от Солнца прямиком к нашему телу?

Видимый свет, ультрафиолетовое излучение, излучение инфракрасного диапазона, радиоволны, ?-лучи состоят из нитей ионизации. Эти нити свободно проходят через космический вакуум, потому что он содержит небольшую плотность частиц, как диэлектрик.
<< 1 2 3 4 5 6 ... 8 >>
На страницу:
2 из 8