«Никакое человеческое знание не может притязать на название истинной науки, если оно не пользуется математическими доказательствами», – писал в XVI веке Леонардо да Винчи. Это было верно уже в младенческие годы науки; ещё правильнее такое утверждение для наших дней. В настоящей книге нам не раз придётся обращаться к формулам из механики. Для читателей хотя и проходивших механику, но забывших эти соотношения, дана здесь небольшая табличка-справочник, помогающая восстановить в памяти важнейшие формулы. Она составлена по образцу пифагоровой таблицы умножения: на пересечении двух граф отыскивается то, что получается от умножения величин, написанных по краям. (Обоснование этих формул читатель найдет в учебниках механики.)
Покажем на нескольких примерах, как пользоваться табличкой.
Умножая скорость v равномерного движения на время t, получаем путь S (формула S = vt).
Умножая силу f на путь S, получаем работу А, которая в то же время равна и полупроизведению массы m на квадрат скорости
.[13 - Формула А = fS верна лишь в том случае, когда направление силы совпадает с направлением пути. Вообще же имеет место более сложная формула А = fS cos?, в которой ? обозначает угол между направлениями силы и пути.Также и формула
верна только в простейшем случае, когда начальная скорость тела равна нулю; если же начальная скорость равна v
, а конечная – v, то работа, которую нужно затратить, чтобы вызвать такое изменение скорости, выражается формулой
.]
Подобно тому как с помощью таблицы умножения можно узнавать результаты деления, так и из нашей таблички можно извлечь, например, следующие соотношения.
Скорость v равнопеременного движения, делённая на время t, равна ускорению а (формула
)
Сила f, делённая на массу m, равна ускорению а; делённая же на ускорение а, равна массе m:
Пусть для решения механической задачи вам потребовалось вычислить ускорение. Вы составляете по табличке все формулы, содержащие ускорение, прежде всего формулы:
а затем и формулу
Среди них ищете ту, которая отвечает условиям задачи.
Если пожелаете иметь все уравнения, с помощью которых может быть определена сила, табличка предложит вам на выбор:
fS= А (работа)
fv = W (мощность)
ft = mv (количество движения)
f = mа.
Не надо упускать из виду, что вес (Р) есть тоже сила, поэтому наряду с формулой f = mа в нашем распоряжении имеется и формула Р = mg, где g – ускорение силы тяжести близ земной поверхности. Точно так же из формулы fS = А следует, что Ph = А – для тела весом Р, поднятого на высоту h.
Пустые клетки таблицы показывают, что произведения соответствующих величин не имеют в механике никакого смысла.
Ещё важное замечание. Формулы механики полезны только в руках того вычислителя, который твёрдо знает, в каких мерах надо выразить входящие в них величины. Если, вычисляя работу по формуле А = fS, вы выразите силу f в ньютонах, а путь S – в сантиметрах, то получите величину работы в редко употребительных единицах – в ньютоно-сантиметрах и, конечно, легко можете запутаться. Чтобы получился надлежащий результат, сила должна быть выражена в ньютонах, а путь – в метрах, тогда работа получится в ньютоно-метрах, или, по-другому, в джоулях. Но вы можете выразить силу и в динах, а путь в сантиметрах, тогда результат покажет число эргов работы (дина – сила, равная 1/100 000 ньютона, т. е. 100 мН) – дино-сантиметров.
Точно так же равенство f = mа даст силу в динах только тогда, когда масса выражена в граммах, а ускорение – в сантиметрах в секунду за секунду.
Умению выбирать единицы мер и безошибочно определять, в каких мерах получился результат, нельзя научиться в четверть часа. Кто этим умением ещё не обладает, тому следует во всех случаях пользоваться мерами системы «сантиметр – грамм – секунда» (СГС), а полученный результат, если нужно, переводить в другие меры[14 - На данный момент в российских школах физика, в своём большинстве, преподаётся в так называемой Международной системе единиц СИ (метр – килограмм – секунда). Однако на момент написания книги, а сейчас – физики на уровне университетов и науки, основной являлась система СГС (сантиметр – грамм – секунда). (Примем. ред.)].
Эти практические мелочи очень существенны, незнание их зачастую приводит к самым нелепым ошибкам.
Отдача огнестрельного оружия
В качестве примера применения нашей таблицы рассмотрим отдачу ружья. Пороховые газы, выбрасывающие своим напором пулю в одну сторону, отбрасывают в то же время и ружьё в обратную сторону, порождая всем известную отдачу. С какой скоростью движется отдающее ружьё? Вспомним закон равенства действия и противодействия. По этому закону давление пороховых газов на ружьё должно быть равно давлению пороховых газов на пулю, выбрасываемую пулю. При этом обе силы действуют одинаковое время. Заглянув в таблицу, находим, что произведение силы (f) на время (t) равно «количеству движения» mv, т. е. произведению массы m на её скорость v:
ft = mv.
Так как ft для пули и для ружья одинаково, то должны быть одинаковы и количества движения. Если m – масса пули, v – её скорость, M – масса ружья, w – его скорость, то согласно сейчас сказанному
mv = Mw,
откуда
Подставим в эту пропорцию числовые значения её членов. Масса пули старой военной винтовки – 9,6 г, скорость её при вылете – 880 м/с, масса винтовки – 4500 г. Значит,
Следовательно, скорость ружья примерно равна 1,9 м/с. Нетрудно вычислить, что отдающее ружьё несёт с собой в 470 раз меньшую «живую силу»
, нежели пуля; это значит, что разрушительная энергия ружья при отдаче в 470 раз меньше, нежели пули, хотя – заметим это! – количество движения для обоих тел одинаково. Неумелого стрелка отдача может всё же опрокинуть и даже поранить.
Рис. 9. Почему ружьё при выстреле отдаёт?
Для нашей старой полевой скорострельной пушки, весящей 2000 кг и выбрасывающей 6-килограммовые снаряды со скоростью 600 м/с, скорость отдачи примерно такая же, как и у винтовки – 1,9 м/с. Но при значительной массе орудия энергия этого движения в 450 раз больше, чем для винтовки и почти равна энергии ружейной пули в момент её вылета. Старинные пушки откатывались отдачей с места назад. В современных орудиях скользит назад только ствол, лафет же остаётся неподвижным, удерживаемый упором (сошником) на конце хобота. Морские орудия (не вся орудийная установка) при выстреле откатываются назад, но, благодаря особому приспособлению, сами после отката возвращаются на прежнее место.
Читатель, вероятно, заметил, что в наших примерах тела, наделённые равными количествами движения, обладают далеко не одинаковой кинетической энергией.
В этом, разумеется, нет ничего неожиданного: из равенства
mv = Mw
вовсе не следует, что
Второе равенство верно лишь в том случае, когда v = w (в этом легко убедиться, разделив второе равенство на первое). Между тем среди людей, не изучавших механику систематически, весьма распространено неправильное убеждение, будто равенство количеств движения (а значит, и равенство импульсов) обусловливает собой равенство кинетической энергии. Многие изобретатели-самоучки, как я заметил, исходят из того, что равным импульсам соответствуют равные количества работы. Это ведёт, конечно, к плачевным неудачам и лишний раз доказывает необходимость для изобретателя хорошо усвоить основы теоретической механики.
Знание обиходное и научное
При изучении механики поражает то, что во многих весьма простых случаях наука эта резко расходится с обиходными представлениями. Вот показательный пример. Как должно двигаться тело, на которое неизменно действует одна и та же сила? Здравый смысл подсказывает, что такое тело должно двигаться всё время с одинаковой скоростью, т. е. равномерно. И наоборот, если тело движется равномерно, то в обиходе это считается признаком того, что на тело действует всё время одинаковая сила. Движение телеги, паровоза и т. и. как будто подтверждает это.
Рис. 10
Механика говорит, однако, совершенно другое. Она учит, что постоянная сила порождает движение не равномерное, а ускоренное, так как к скорости, ранее накопленной, сила непрерывно добавляет новую скорость. При равномерном же движении тело вовсе не находится под действием силы, иначе оно двигалось бы неравномерно (см. с. 20).
Неужели же обиходные наблюдения так грубо ошибочны?
Нет, они не вполне ошибочны, но относятся к весьма ограниченному кругу явлений. Обиходные наблюдения делаются над телами, перемещающимися в условиях трения и сопротивления среды. Законы же механики имеют в виду тела, движущиеся свободно. Чтобы тело, движущееся с трением, обладало постоянной скоростью, к нему действительно надо приложить постоянную силу. Но сила тратится здесь не на то, чтобы двигать тело, а лишь на то, чтобы преодолевать трение, т. е. создать для тела условия свободного движения. Вполне возможны поэтому случаи, когда тело, движущееся с трением равномерно, находится под действием постоянной силы.
Мы видим, в чём грешит обиходная механика: её утверждения почерпнуты из недостаточного материала. Научные обобщения имеют более широкую базу. Законы научной механики выведены из движения не только телег и паровозов, но также планет и комет. Чтобы делать правильные обобщения, надо расширить поле наблюдений и очистить факты от случайных обстоятельств. Только так добытое знание раскрывает глубокие корни явлений и может быть плодотворно применено на практике.
В дальнейшем мы рассмотрим ряд явлений, где отчётливо выступает связь между величиной силы, двигающей свободное тело, и величиной приобретаемого им ускорения, связь, которая устанавливается уже упоминавшимся вторым законом Ньютона. Это важное соотношение, к сожалению, смутно усваивается при школьном прохождении механики. Примеры взяты в обстановке фантастической, но сущность явления выступает от этого ещё отчетливее.