Оценить:
 Рейтинг: 0

Занимательная механика

Год написания книги
1930
Теги
<< 1 2 3 4 5 6 7 8 >>
На страницу:
3 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля
. Так, твёрдое тело массой 1 кг действовало бы на опору или подвес (например, на вашу руку) с силой 1 кг ? 9,8 м/с

= 9,8 Н. (Примеч. ред.)].

Задача о двух лошадях

Две лошади растягивают пружинный безмен[11 - Безмен – простейшие весы. В случае пружинного безмена представляют собой пружину, прикреплённую к измерительной шкале с одной стороны, и к которой с другой стороны подвешивается груз, массу которого хотят узнать. В зависимости от массы – при постоянной силе тяжести – пружина растягивается до определённого уровня, соответствие которого массе смотрят по измерительной шкале. (Примеч. ред.)] с силой 1000 Н каждая. Что показывает стрелка безмена?

Решение

Многие отвечают: 1000 + 1000 = 2000 Н. Ответ неверен. Силы по 1000 Н, с какими тянут лошади, вызывают, как мы только что видели, натяжение не в 2000, а только в 1000 Н.

Рис. 7. Каждая лошадь тянет с силой 1000 Н. Сколько показывает пружинный безмен?

Поэтому, между прочим, когда магдебургские полушария растягивались 8 лошадьми в одну сторону и 8 в противоположную, то не следует думать, что они растягивались силой 16 лошадей. При отсутствии противодействующих 8 лошадей остальные восемь не произвели бы на полушария ровно никакого действия. Одну восьмёрку лошадей можно было бы заменить просто стеной.

Задача о двух лодках

К пристани на озере приближаются две одинаковые лодки. Оба лодочника подтягиваются с помощью верёвки. Противоположный конец верёвки первой лодки привязан к тумбе на пристани; противоположный же конец верёвки второй лодки находится в руках матроса на пристани, который также тянет верёвку к себе. Все трое прилагают одинаковые усилия. Какая лодка причалит раньше?

Решение

На первый взгляд может показаться, что причалит раньше та лодка, которую тянут двое: двойная сила порождает большую скорость.

Рис. 8. Какая лодка причалит раньше?

Но верно ли, что на эту лодку действует двойная сила? Если и лодочник, и матрос оба тянут к себе верёвку, то натяжение верёвки равно силе только одного из них – иначе говоря, оно таково же, как и для первой лодки. Обе лодки подтягиваются с равной силой и причалят одновременно[12 - С таким моим решением не согласился один из наших известных физиков, высказавший в письме ко мне соображение, которое, возможно, возникло в уме и других читателей: «Чтобы лодки причалили, – писал он, – надо, чтобы люди выбирали верёвки. А двое, конечно, за то же время выберут верёвки больше, и потому правая лодка причалит скорее». Этот простой довод, кажущийся на первый взгляд бесспорным, на самом деле ошибочен. Чтобы сообщить лодке двойную скорость (иначе лодка не пристанет вдвое быстрее), каждый из двоих тянущих должен тянуть лодку с удвоенной силой. Только при таком условии удастся им выбрать вдвое больше верёвки, чем одинокому (в противном случае – откуда возьмётся у них для этого свободная верёвка?). Но в условии задачи оговорено, что «все трое прилагают одинаковые усилия». Сколько бы двое ни старались, им не выбрать верёвки больше, чем одинокому, раз сила натяжения верёвок одинакова.].

Загадка пешехода и паровоза

Бывают случаи – на практике нередкие, – когда как действующая, так и противодействующая силы приложены в разных местах одного и того же тела. Мускульное напряжение или давление пара в цилиндре паровоза представляют примеры таких сил, называемых внутренними. Особенность их та, что они могут изменять взаимное расположение частей тела, насколько это допускает связь частей, но никак не могут сообщить всем частям тела одно общее движение. При выстреле из ружья пороховые газы, действуя в одну сторону, выбрасывают пулю вперёд. В то же время давление пороховых газов, направленное в противоположную сторону, сообщает ружью движение назад. Двигать вперёд и пулю, и ружьё давление пороховых газов, как сила внутренняя, не может.

Но если внутренние силы не способны перемещать всё тело, то как же движется пешеход? Как движется паровоз? Сказать, что пешеходу помогает трение ног о землю, а паровозу – трение колес о рельсы, не значит еще разрешить загадку. Трение, конечно, совершенно необходимо для движения пешехода и паровоза: известно, что нельзя ходить по очень скользкому льду и что паровоз на скользких рельсах вращает колеса, не двигаясь с места. Но известно и то, что трение – сила пассивная (с. 20), не способная сама по себе порождать движение.

Выходит, что силы, участвующие в движении пешехода и паровоза, не могут заставить их двигаться. Каким же образом движение всё-таки происходит?

Загадка разрешается довольно просто. Две внутренние силы, действуя одновременно, не могут сообщить телу движения, так как действие одной силы уравновешивается действием другой. Но что будет, если некоторая третья сила уравновесит или ослабит действие одной из двух внутренних сил? Тогда ничто не помешает другой внутренней силе двигать тело. Трение и есть та третья сила, которая ослабляет действие одной из внутренних сил и тем даёт другой силе возможность двигать тело.

Для большей ясности обозначим обе внутренние силы буквами F

и F

, а силу трения – буквой F

. Если величина и направление силы F

таковы, что она достаточно ослабляет действие силы F

, то сила F

сможет привести тело в движение. Короче, движение пешехода и паровоза осуществляется потому, что из трёх действующих на тело сил

F

, F

, F

силы F

и F

полностью или частью уравновешиваются, и тогда сила F

становится действующей.

Инженеры, описывая движение паровоза, предпочитают говорить, не вполне последовательно, что уравновешиваются силы F

и F

, а движет паровоз сила трения F

. Практически это, впрочем, безразлично, поскольку для движения паровоза необходимо участие и силы пара, и силы трения.

Что значит преодолеть инерцию?

Закончим главу рассмотрением ещё одного вопроса, также зачастую порождающего превратные представления.

Приходится нередко читать и слышать, что для приведения покоящегося тела в движение надо прежде всего преодолеть инерцию этого тела. Мы знаем, однако, что свободное тело нисколько не сопротивляется стремлению силы привести его в движение. Что же тут надо «преодолевать»?

«Преодоление инерции» – не более как условное выражение той мысли, что каждое тело для приведения себя в движение с определённой скоростью требует и определённого промежутка времени. Никакая сила, даже самая большая, не может мгновенно сообщить заданную скорость никакой массе, как бы ни была ничтожна эта масса. Мысль эта замкнута в краткой формуле

ft = mv,

о которой мы будем говорить в следующей главе, но которая, надеюсь, знакома читателю из учебника физики. Ясно, что при t = 0 (время равно нулю) произведение mv (массы на скорость) равно нулю, и, следовательно, скорость равна нулю, так как масса не может равняться нулю. Другими словами, если силе /не дать времени для проявления её действия, она не сообщит телу никакой скорости, никакого движения. Если масса тела велика, потребуется сравнительно большой промежуток времени, чтобы сила сообщила телу заметное движение. Нам будет казаться, что тело начинает двигаться не сразу, что оно словно противится действию силы. Отсюда и сложилось ложное представление о том, что сила, прежде чем заставить тело двигаться, должна «преодолеть его инерцию», его косность (буквальный смысл слова «инерция»).

Железнодорожный вагон

Один из читателей просит меня разъяснить вопрос, который, в связи с только что сказанным, возник, вероятно, у многих: «Почему сдвинуть железнодорожный вагон с места труднее, чем поддерживать движение вагона, уже катящегося равномерно?»

Не только труднее, прибавлю я, но и вовсе невозможно, если прилагать небольшое усилие. Чтобы поддерживать равномерное движение пустого товарного вагона по горизонтальному пути, достаточно, при хорошей смазке, усилия в 150 Н. Между тем такой же неподвижный вагон не удаётся сдвинуть с места силой меньшей 600 Н.

Причина не только в том, что приходится в течение первых секунд затрачивать силу на приведение вагона в движение с заданной скоростью (затрата эта сравнительно невелика), причина кроется главным образом в условиях смазки стоящего вагона. В начале движения смазка ещё не распределена равномерно по всему подшипнику, и оттого заставить вагон двигаться тогда очень трудно. Но едва колесо сделает первый оборот, условия смазки сразу значительно улучшаются, и поддерживать дальнейшее движение становится несравненно легче.

Глава 2

Сила и движение

Справочная таблица по механике

<< 1 2 3 4 5 6 7 8 >>
На страницу:
3 из 8