При разработке нового продукта требуется организовать структуру, которая оптимизирует управление и руководство, облегчает внутренний обмен информацией, принятие решений и потоки поставок. Рынки высоких технологий требуют от нового продукта удовлетворения уровня качества при запланированных расходах и, что критично, в заданные сроки. Координация инжиниринга, производства, обеспечения качества, маркетинговых функций в процессе разработки нового продукта является жизненно важной. Необходимость использования подходов системной инженерии обусловлена несовершенством устаревших процессов разработки новых изделий. Результатом применения системной инженерии будет повышение качества исполнения программ (выполнение проектов в заданные сроки, в рамках бюджета, согласно требованиям, с высоким качеством).
Для реализации проектов и программ в системной инженерии используют основные варианты декомпозиции.
• Декомпозиция проблемы: разделение сложной проблемы на более простые позволяет легче найти решение и четко сформулировать задачи для каждого сотрудника.
• Декомпозиция времени: разбиение проекта на фазы с указанием конкретных результатов позволяет эффективно контролировать процесс разработки, измерять эффективность и вовремя применять корректирующие меры.
• Декомпозиция продукта: разделение самых сложных изделий на системы, подсистемы, сборки и узлы позволяет эффективно управлять конфигурацией и поставщиками.
• Декомпозиция действий с последующей интеграцией: определяет четкую последовательность необходимых действий (требования, спецификация, декомпозиция, проект, интеграция, верификация, эксплуатация, вывод из эксплуатации).
СИ учитывает деловые и технические потребности приобретателей с целью предоставления качественного решения, которое отвечает требованиям заинтересованных сторон, подходит для достижения цели в эксплуатации и позволяет избежать или минимизировать неблагоприятные непреднамеренные последствия.
Целью всех видов деятельности СИ является управление рисками, включая степень снижения рисков непредоставления того, что хочет приобретатель, риска несвоевременной поставки, риска избыточных затрат и риска негативных непреднамеренных последствий.
2.2. Системное мышление
В процессе реализации высокотехнологичных проектов приходится преодолевать текущие вызовы:
1) интеграции развивающихся информационно-емких систем и технологий;
2) множества заинтересованных сторон с потенциально расходящимися точками зрения и политически мотивированными программами, дефицитными и динамично меняющимися ресурсами, доступными для поддержки проекта или программы;
3) постоянно меняющиеся требования для выполнения;
4) технологические достижения, которые нужно потенциально совместить с имеющимися и развивающимися инфраструктурами для поддержки;
5) срочность реагирования на изменения в операционных предположениях;
6) возрастающие сложности и неопределенности жизненного цикла систем.
Мышлением называют функцию человеческого мозга, отвечающую за концептуальное отражение существенных общих законов в предметах и процессах объективной действительности. Системное мышление (СМ) может предоставить менеджерам и лидерам инженерных специальностей ценные возможности для более эффективного решения упомянутых сложных проблемных областей.
СМ можно определить как новый способ взглянуть и мысленно сформировать видимые сущности; мировоззрение и образ мышления. Где следует видеть сущность или единицу в первую очередь как единое целое, с его соответствием и отношением к окружающей среде. В основе СМ лежит концепция целостности (холизма), которая предполагает, что понимание сложной системы должно охватывать уровень всей системы. Системное мышление определяет целостную философию, способную раскрыть критическую структуру системы: ее границы, входы, выходы, пространственную ориентацию, структуру процессов и сложные взаимодействия системы с окружающей средой. СМ позволяет определить для конкретной задачи набор основных системных принципов, чтобы руководить инженерами на базе более эффективного мышления, решений, действий и интерпретаций для лучшего понимания и разрешения сложных проблемных областей. Разбиение системы на составные части не дает адекватного понимания того, как система функционирует в целом.
Возрастающую сложность можно представить как динамичную, неопределенную, возникающую ситуацию, содержащую большое количество тесно взаимосвязанных элементов и факторов. Диапазон альтернатив индивидуальных точек зрения, целей и предполагаемых интересов усложняет согласование для продвижения вперед. При этом непредвиденные факторы могут включать распределение ограниченных ресурсов, контроль исполнения, личные предпочтения, интересы и др. В сложных проблемных областях заинтересованными сторонами следует считать тех физических или юридических лиц, которые имеют прямой или предполагаемый интерес в решении проблемы, что расширяет их круг, в том числе по мере изучения проблемной области.
Границы сложных систем неоднозначны. Их критерии являются произвольными и часто качественными по своему характеру. Природа границ может принимать различные формы (например, географические, временные, концептуальные, функциональные, физические), которые могут меняться со временем.
В настоящее время объем перерабатываемых для реализации проекта данных и информации растет в геометрической прогрессии. Нужны разработки эффективных подходов к сканированию, фильтрации, сокращению и преобразованию информации в действенные формы. Часто лидерам программ приходится пробираться через «болото» информации, стремясь определить выборки, которые необходимы для принятия решений и действий.
Происходящая смена поколений в рабочей силе вносит дополнительные вопросы в проблемную область. При интеграции командных усилий для создания систем необходимо преодолевать различия между поколениями. В части длительных сроков разработки новых продуктов следует понимать, что используемые знания могут носить временный характер, неполны и подвержены ошибкам.
Использование системного мышления расширяет когнитивные навыки, то есть умственные способности, связанные с тем, как мозг человека обрабатывает информацию об окружающем мире. К ним относятся внимание, память, логика и мышление, визуальная и слуховая память, скорость обработки информации, ответных реакций, регуляция эмоций и др. Это облегчает формулирование проблем, представляя набор доступных альтернатив для решения. Принимаемые решения неизбежно оказывают влияние на другие компоненты в системе, давая возможность делать осознанный выбор.
Для реализации принципов системного мышления рекомендуется действовать следующим образом.
На первом этапе необходимо провести всесторонний анализ текущей ситуации с учетом ее потенциального влияния на возможности, потребности организации и заинтересованных сторон посредством оценки технологических рисков и уровней готовности технологии. Оценивают потенциальные решения об осуществимости.
Второй этап включает выявление и определение желаемой цели, требований бизнеса, а также потребностей заинтересованных сторон. Также необходимо тщательно рассмотреть оценку затрат и планирование процесса разработки.
Третий этап содержит разработку различных типов концепций. Определяют несколько альтернатив для данной концепции, в которых потенциально предложены возможности, повышение производительности или сокращение расходов.
Четвертая фаза включает оценку и выбор предпочтительных альтернатив концепций. СМ подчеркивает необходимость их тестирования и оценки. Модели и прототипы здесь незаменимы для более глубокого понимания потребностей заинтересованных сторон, принятия архитектурных компромиссов, выявления рисков и возможностей.
Для повышения эффективности системного мышления полезно использовать некоторые общие принципы выбора альтернатив его применения.
Выбор сложности (многомерных проблем, рабочих решений) или простоты (избегания неопределенности, работы над линейными проблемами, предпочтения лучших решений и мелкомасштабных задач).
Позиция глобальной интеграции (зависимых решений и мирового уровня производительности) или автономии (независимых решений и местного уровня производительности).
Взаимодействие глобального типа (следовать общему плану, работа в команде и меньше интересов в причинно-следственных связях) или изоляции (склонность к локальному взаимодействию, подробному плану, предпочтение работать индивидуально, в небольших системах и больше интереса к причинно-следственным решениям).
Непротивление изменениям требований (принимать во внимание несколько точек зрения, уделять больше внимания долгосрочным планам, лучше работать в меняющейся среде) или принятие неизменных требований (больше сосредотачиваться на краткосрочных планах и мышлении, иметь тенденцию фиксировать решения и лучше работать в стабильной среде).
Типовые ошибки при решении системных проблем включают, например, такие пункты.
• Выбор неправильных заинтересованных сторон. Отсутствие их достоверного учета может сделать системное решение неадекватным до его развертывания.
• Узкий набор вариантов, когда из-за быстрого исключения возможных альтернативных системных опций из исследования выпадают потенциально эффективные решения.
• Неверно определены суженные границы системы, что может привести к поиску решений неправильной системной проблемы.
• Неправильная формулировка проблемы, когда язык и способ ее описания могут привести к ограничению возможных подходов исследования системы.
• Неспособность применения СМ, тогда как сложные системные проблемы должны рассматриваться комплексно с точки зрения взаимосвязей, шаблонов и границ.
Полезно принимать во внимание несколько принципов, чтобы помочь избежать потенциальных ловушек при применении системного мышления.
1. Уникальность проблемы и потребности. Даже при наличии сходства с предыдущими задачами предположение об уникальности имеет решающее значение для избегания поспешной предрасположенности к конкретному подходу, который мог быть успешным ранее.
2. Уникальность контекста проблемы, набора обстоятельств, факторов, условий или закономерностей, которые ограничат проблему системы и возможные решения.
3. Уникальность методологии развертывания, которая должна быть совместимой и подходящей для конкретной задачи, которая в свою очередь должна быть совместима с решаемой проблемой и содержанием.
4. Системное обрамление. При выработке целостного видения ситуации, разрабатывая несколько правдоподобных сценариев, инженеры и менеджеры должны открывать потенциальное пространство для принятия решений.
5. Предвидение появления системы как результата предполагает сосредоточение внимания на альтернативах, которые можно выявлять, анализировать, эффективно реагировать и оценивать для решения возникающих условий.
2.3. Управление жизненным циклом проекта и продукта
Задача управления жизненным циклом системы состоит в создании управленческих механизмов для принятия локальных решений на каждой из стадий ЖЦ, учитывая все последствия для следующих этапов, и затем позволяют вносить необходимые корректировки в процессы на других стадиях ЖЦ. Сложность объектов, созданных инженерами, определяется их размерами и количеством частей. Если современный пассажирский самолет включает примерно 100 тысяч деталей (без учета крепежа), то нефтяная океанская платформа насчитывает до 10 миллионов деталей. В системной инженерии представлены правила, инструменты и технологии для разработки продуктов и систем любой сложности.
В начале процесса управления жизненным циклом объекта разработки необходимо сделать следующее:
a) определить, что является базовой системой;
b) описать общие этапы жизненного цикла проекта, их цели, деятельности, продукцию и ворота принятия решений, которые их разделяют;