6. Питательная среда должна быть стерильной.
По составу питательные среды могут быть синтетическими и натуральными. Питательные среды являются синтетическими, если содержат только химически чистые соединения в установленных дозировках, т. е. состав их полностью известен. Достоинством таких сред являются стандартность и воспроизводимость. Однако только для немногих патогенных бактерий имеются синтетические среды. Их применяют главным образом для экспериментального изучения метаболизма микробов.
Для практических исследований широко используют натуральные среды. Натуральные (естественные) питательные среды состоят из продуктов животного и растительного происхождения и имеют неопределенный химический состав.
Различают питательные среды общего назначения (универсальные) и специальные. Питательные среды общего назначения пригодны для выращивания многих видов микроорганизмов и служат основой для приготовления специальных питательных сред. К ним относятся, например, мясопептонный бульон, мясопептонный агар, бульон Хоттингера, агар Хоттингера и др. Специальные питательные среды предназначены для избирательного культивирования определенных видов микроорганизмов, изучения их свойств и условий хранения.
Различают следующие виды специальных сред: элективные (избирательные), дифференциально-диагностические, консервирующие. Избирательность питательной среды для определенных видов микробов достигается путем создания для них оптимальных условий (рН, Еh, концентрация солей, состава питательных веществ), т. е. положительной селекцией, или путем добавления в среду веществ (желчи, азида натрия, теллурита калия, антибиотиков и др. ), угнетающих другие микробы, т. е. отрицательной селекцией. Дифференцирующие свойства питательной среды создаются внесением субстрата, к которому определяется отношение микроба (например, сахаров, аминокислот и др.), соответствующих индикаторов (например, рН-индикаторов – бромтимолблау, фуксин; Еh-индикаторов).
По консистенции питательные среды могут быть жидкими, полужидкими (0,2 – 0,7 % агара) и плотными (1,5 – 2 % агара). Сухие питательные среды, выпускаемые промышленностью, получают путем консервации сред.
Для обеспечения микрообъемной технологии биохимической идентификации микроорганизмов выпускаются коммерческие микротест-системы. Они представлены двумя группами, различающимися особенностями содержания субстрата реакции: 1) в питательной среде; 2) в шаблоне-носителе. Тест-системы первой группы содержат в микрообъемных лунках полистироловых пластин дегидрированные питательные среды, стабилизированные поливиниловым спиртом, например, API-20E, Enterotest 1 и 2, отечественные ПБДЕ и MMTE 1иЕ2.Тест-системы второй группы имеют субстрат и индикатор в бумажном или полимерном шаблоне-носителе, например, Micro-ID, Minitek.
Разработаны также тест-системы на основе жидких дифференциальных сред, которые можно изготавливать непосредственно в лабораториях. По результатам биохимических тестов устанавливается вид микроорганизма с помощью таблиц идентификации, аналитического каталога кодов или приборов автоматизированных микробиологических систем биохимической идентификации микроорганизмов. Ввиду ускорения исследования и высокой экономичности микрообъемные тест-системы находят широкое применение в работе лабораторий.
Для натуральных питательных сред используют животные, растительные и микробные продукты: мясо, рыбную муку, молоко, яйца, кровь, картофель, дрожжи и др. Из них готовят полуфабрикаты: настои и экстракты (мясная вода, дрожжевой экстракт), ферментативные и кислотные гидролизаты (пептон, перевар Хоттингера, перевар казеина и др.). Настои и экстракты являются источником факторов роста, гидролизаты – источником аминокислот и других органических питательных веществ.
В качестве уплотнителя питательных сред применяют агар-агар или желатин. Агар-агар – полисахарид, получаемый из морских водорослей. Он способен образовывать в воде гель, плавящийся при температуре 80 – 86 °C и застудневающий при температуре 40 – 45 °C; не расщепляется большинством микроорганизмов. Желатин – белок, получаемый из кожи и костей; желатиновый гель плавится при температуре 32 – 34 °C, застывает при 26 – 28 °C (т. е. при температуре инкубации 37 °C находится в жидком состоянии); расщепляется многими видами микроорганизмов. Поэтому желатин применяют редко.
При необходимости осветляют питательную среду, обрабатывая ее белком куриного яйца, сывороткой или путем осаждения. Разливают среду в колбы, флаконы, пробирки. Если среда подлежит стерилизации при температуре 120 °C, используют чистую нестерильную посуду, а если среда требует стерилизации текучим паром (100 °C) или при температуре 112 °C – стерильную. Закрывают посуду со средой ватномарлевыми пробками с бумажными колпачками. В зависимости от состава среды стерилизуют различными способами. Агаровые среды, не содержащие углеводов и нативного белка, а также синтетические среды стерилизуют в автоклаве при температуре 115 – 120 °C в течение 15 – 20 мин. Среды, содержащие углеводы, молоко, желатин, стерилизуют текучим паром (100 °C) дробно или в автоклаве при температуре 112 °C в течение 15 мин. Среды, содержащие нативный белок, мочевину, стерилизуют фильтрованием или добавляют стерильные компоненты (кровь, сыворотку и др.) в стерильную основу среды. Готовые стерильные питательные среды подвергают контролю на стерильность путем выдерживания в термостате при температуре 37 °C в течение 1 – 3 сут.
Можно готовить питательные среды из сухих (консервированных) порошков. Навеску сухой среды, указанную на этикетке, погружают в дистиллированную или водопроводную воду и кипятят до полного растворения порошка. Затем разливают среду в стерильные колбы, пробирки и стерилизуют. Некоторые среды (например, Эндо, Плоскирева, Левина) можно использовать без стерилизации.
Бактериологическому контролю подлежат все питательные среды промышленного производства и все среды, приготовленные в лаборатории. В качестве тест-культур используют типовые или местные штаммы бактерий, типичные по всем признакам, в гладкой форме. Определяют следующие биологические показатели питательной среды: чувствительность (ростовую), ингибирующие свойства, дифференцирующие свойства, скорость роста бактерий на среде, воспроизводимость.
Чувствительность питательной среды устанавливают исходя из минимального количества колониеобразующих единиц (КОЕ) бактерий, обеспечивающих появление роста колоний на среде, или по максимальному десятикратному разведению культуры из исходной концентрации 10 ед. мутности (по оптическому стандарту мутности Государственного контрольного института им. Л. А. Тарасевича), обеспечивающему появление роста бактерий на всех засеянных чашках Петри. Ингибирующие свойства среды оценивают как степень подавления прочей микрофлоры по величине посевной дозы в КОЕ, полностью подавляемой на среде, или по отношению количества выросших колоний бактерий к расчетному количеству посеянных бактерий.
Дифференцирующие свойства сред изучают путем посева испытуемых видов бактерий в смеси с другими видами с последующим определением четкости дифференциации колоний искомых бактерий. Специфичность дифференцирующего свойства среды выявляют по отсутствию этого свойства у прочих видов бактерий. Скорость роста бактерий (в часах) на среде устанавливают по минимальному времени инкубации посевов, в течение которого обеспечивается четкий, видимый невооруженным глазом рост культуры (для селективных сред) или формирование колоний с типичными дифференциальными признаками. Воспроизводимость биологических показателей сред оценивают по частоте одинаковых результатов (%) при повторных использованиях сред с теми же штаммами бактерий. Контроль различных питательных сред по биологическим показателям проводят по конкретным методикам и нормативам, руководствуясь официальными документами.
Физико-химический контроль питательных сред в лабораториях осуществляют по показателям рН, rH и содержанию аминного азота. Прочие показатели изучают обычно при промышленном производстве питательных сред. Для определения рН и rH сред используют рН-метры, индикаторные бумажки, а также различные химические индикаторы рН и rН, вносимые в питательные среды. Содержание аминного азота изучают методом рН-метрического формолового титрования питательных сред по ГОСТу.
Изучение биохимических свойств выделенных микроорганизмов проводят на третьем этапе. Культуру микроорганизмов, выросшую на скошенном агаре, проверяют на чистоту путем микроскопии мазков, окрашенных по Граму. При этом обращают внимание на форму микроба, величину, расположение клетки. Используя специальное окрашивание выявляют споры, капсулы, включения и жгутики.
Для идентификации культур, т. е. установления вида и типа бактерий, помимо морфологических и культуральных изучают биохимические, антигенные и другие свойства.
6.3. Особенности культивирования облигатно-анаэробных бактерий
Биологические особенности облигатных анаэробов обусловливают необходимость применения специальных методов их культивирования, отличающихся от используемых при работе с аэробными и факультативно-анаэробными микроорганизмами.
Важным условием, которое необходимо соблюдать на всех этапах выделения и идентификации анаэробов, является защита этих микроорганизмов от токсического действия молекулярного кислорода. Время между взятием материала и его посевом на питательные среды должно быть максимально коротким. Для защиты содержащихся в патологическом материале облигатных анаэробов от воздействия атмосферного кислорода используют специальные транспортные среды.
Анаэробные бактерии можно культивировать только на специальных бескислородных питательных средах с низким окислительно-восстановительным потенциалом (10 – 150 мВ). Для контроля за степенью насыщения этих сред кислородом используют специальные редокс-индикаторы (метиленовый синий, резазурин), восстановленные формы которых бесцветны. При возрастании окислительно-восстановительного потенциала (ОВП) метиленовый синий окрашивает среды в синий, а резазурин – в розовый цвет, что указывает на непригодность таких питательных сред для культивирования облигатных анаэробов.
Для сохранения низкого ОВП питательные среды должны быть агаризованы. Добавление даже 0,05 %-ного агара повышает их вязкость и уменьшает аэрацию. Для роста облигатно-анаэробных бактерий необходимо использовать только плотные свежеприготовленные питательные среды (не позднее двух часов после приготовления) или прередуцированные (выдержанные в анаэростате не менее суток). Для успешного выращивания анаэробов требуется внесение большого количества посевного материала, в связи с тем что большие концентрации облигатных анаэробов способны быстрее уменьшать ОВП среды и тем самым создавать благоприятные условия для своего роста.
Анаэробный тип дыхания во много раз менее продуктивен, чем аэробный, поэтому питательные среды для анаэробов должны быть более насыщены питательными субстратами и витаминами. В качестве питательной основы они содержат различные экстракты и белковые гидролизаты (сердечно-мозговой и печеночный настои, дрожжевой и соевый экстракты, пептон, триптон, гидролитический перевар казеина и др.), а также гемин, менадион, твин-80, сукцинат натрия, цельную или лизированную кровь. Для выделения различных анаэробов из смеси культур к питательным основам добавляют желчь, азид натрия, антибиотики, налидиксовую кислоту, малахитовый зеленый и другие ингредиенты. В лабораториях для выделения анаэробов из патологического материала чаще всего используют среду для контроля стерильности (СКС), СКС-199, среду Китта – Тароцци, анаэробный кровяной агар (на основе эритрит-агара или агара Д), среду Вильсона – Блера и некоторые другие с соответствующими добавками.
Необходимым условием культивирования анаэробных бактерий является создание анаэробных условий, что достигается с помощью физических, химических, биологических и смешанных методов.
Физические методы
1. Для удаления растворенного в питательных средах кислорода производят регенерацию этих сред путем кипячения в течение 15 – 20 мин на водяной бане. Затем среды быстро охлаждают до 45 – 50 °C.
После посева для предотвращения проникновения кислорода в жидкую питательную среду ее поверхность заливают стерильным вазелиновым маслом или парафином.
2. Посев содержащего анаэробы патологического материала в высокий столбик плотной или полужидкой питательной среды, которая разливается в пробирки в объеме 10 – 12 мл. Кислород воздуха диффундирует обычно на расстояние 1,5 – 2,0 см от поверхности, а в глубине создаются благоприятные условия для роста облигатных анаэробов.
3. Эвакуационно-заместительный метод заключается в удалении воздуха из герметически закрытых сосудов (анаэростатов, анаэробных боксов) с помощью вакуумного насоса с последующей заменой его инертным газом (азотом, аргоном, гелием) или бескислородной газовой смесью, состоящей из 80 % азота, 10 % двуокиси углерода и 10 % водорода. В ряде случаев используют природный (магистральный) газ. Для поглощения остатков кислорода из газовой смеси применяют палладиевый катализатор. Для поглощения водяных паров на дно анаэростата помещают хлористый кальций, силикагель или хлористый натрий.
Химические методы
1. Применение щелочных растворов пирогаллола для поглощения кислорода в замкнутой воздушной среде. Для поглощения кислорода используют смесь раствора пирогаллола и насыщенного раствора карбоната натрия (Nа
CO
).
2. Для поглощения кислорода из замкнутого пространства можно применять гидросульфит натрия.
3. Для связывания остатков кислорода в предназначенных для роста анаэробов питательных средах используют вещества-редуценты, к которым относятся тиогликолевая кислота или тиогликолат натрия, аскорбиновая кислота, различные сахара, цистин и цистеин, муравьинокислый натрий и др.
4. Применение газогенерирующих систем для создания анаэробных условий в замкнутой воздушной среде (микроанаэростатах, эксикаторах, прозрачных газонепроницаемых пластиковых пакетах).
Для образования водорода и двуокиси углерода, необходимых для роста облигатных анаэробов, используют специальные таблетки, которые активируются добавлением воды. Водород, генерируемый таблетками боргидрида натрия, связывает кислород воздуха в присутствии палладиевого катализатора с образованием воды. Углекислый газ вырабатывается при взаимодействии лимонной кислоты с бикарбонатом натрия. Этот метод особенно удобен при работе в полевых условиях.
Биологические методы
1. Совместное выращивание анаэробов и аэробов (метод Фортнера). На одну половину чашки Петри с плотной питательной средой засевают исследуемый материал, а на другую – культуру аэробного или факультативно-анаэробного микроорганизма, способного энергично поглощать кислород. После посева чашку закрывают крышкой, края которой для герметизации заливают парафином или заклеивают пластилином. В качестве активного поглотителя кислорода из замкнутого пространства часто используют культуру Serratia marcescens, которая является своеобразным индикатором качества анаэробиоза. При недостаточной герметизации чашки этот микроорганизм образует ярко-красный пигмент, а при сохранении строго анаэробных условий вырастают бесцветные или бледно-розовые колонии.
2. Помещение в питательную среду кусочков печени, головного мозга, почек и других внутренних органов. При этом тканевые клетки активно поглощают и адсорбируют на себе кислород, в результате чего в среде создаются анаэробные условия. Примером питательной среды, сконструированной по этому принципу, является содержащая кусочки печени среда Китта – Тароцци. К тому же в печеночной ткани содержится большое количество веществ с SH-группой (цистеин, глютатион и др.), обладающих сильным редуцирующим действием.
Смешанные методы
В большинстве практических лабораторий применяют смешанные методы создания анаэробных условий. Для работы с наиболее чувствительными к молекулярному кислороду анаэробами используют строгую анаэробную технику (метод Хангейта). Метод основан на создании лишенных кислорода питательных сред, воздух над которыми удаляется и замещается бескислородным газом.
Для предотвращения попадания кислорода сосуды с питательными средами закрывают резиновыми пробками. Во время инокуляции анаэробиоз поддерживается за счет постоянного омывания сред потоком бескислородного газа.
6.4. Методы выделения чистых культур облигатных анаэробов
1. Метод Цейсслера. Исследуемый материал рассевают штрихами по поверхности плотной питательной среды, помещают в анаэробные условия и выдерживают в термостате при температуре 37 °C в течение 24 – 72 ч. Изолированные колонии анаэробов пересевают в среду для контроля стерильности (СКС) или среду Китта – Тароцци.
2. Метод Вейнберга. Несколько капель исследуемого материала вносят в пробирку с 0,9 % раствором хлористого натрия, перемешивают и переносят в пробирку с охлажденным сахарным агаром, разлитым высоким столбиком. После перемешивания последовательно засевают еще две пробирки с сахарным агаром и быстро охлаждают под струей холодной воды. Выросшие через 24 – 72 ч в глубине агара изолированные колонии анаэробов засевают в среду Китта – Тароцци или СКС.
3. Метод Вейона – Виньяля. Готовят разведения исследуемого материала в пробирках с сахарным агаром. Из каждой пробирки разведенный материал насасывают в пастеровские пипетки и запаивают их концы. После получения микробного роста пипетку надпиливают в соответствующем месте, разламывают с соблюдением правил стерильности и переносят изолированную колонию в среду Китта – Тароцци или СКС.
4. Метод Перетца. Готовят разведения исследуемого материала. Содержимое пробирки с соответствующим разведением выливают в стерильную чашку Петри, на дне которой на двух стеклянных или деревянных палочках лежит стеклянная пластинка. Среду заливают сбоку таким образом, чтобы она заполнила все пространство между пластинкой и дном чашки Петри. При появлении микробного роста стеклянную пластинку удаляют, а изолированную колонию засевают в пробирку со средой Китта – Тароцци или СКС для получения чистой культуры.
Наиболее простой и удобной разновидностью метода Перетца является метод «перевернутых чашек». При этом каждое разведение исследуемого материала в пробирке с сахарным агаром заливают в крышку чашки Петри и закрывают ее стерильным донышком чашки, избегая образования пузырей воздуха. Щель между краями крышки и дном чашки Петри заливают расплавленным парафином. Термостатируют при температуре 37 °C до появления изолированных колоний анаэробов.