2.4. Обучение модели: ИИ-модель обучается на данных с использованием алгоритма обучения. Алгоритм обучения определяет, как модель обновляется на основе обратной связи от данных.
2.5. Оценка модели: ИИ-модель оценивается на тестовых данных, чтобы определить её точность и эффективность. Оценка модели может включать метрики, такие как точность, полнота и F-мера.
2.6. Развёртывание модели: обученная модель развёртывается в производственной среде, где она используется для решения реальных задач. Развёртывание модели может включать интеграцию с существующими системами и обеспечение безопасности.
Обучение искусственного интеллекта является сложным и многогранным процессом, который требует глубоких знаний в области компьютерных наук, математики и статистики. Однако благодаря развитию технологий и методов обучения, искусственный интеллект становится всё более мощным и эффективным инструментом для решения сложных задач.
3. Создание ИИ-модели на примере идентификации лиц.
Создание ИИ-модели, предназначенной для идентификации лиц, состоит из следующих этапов:
3.1. Сбор данных. На этом этапе собирается большой объём данных, содержащих изображения лиц людей (создание датасетов). Эти данные могут быть собраны из открытых источников, таких как социальные сети, или созданы специально для этой цели.
3.2. Предварительная обработка данных. Собранные данные проходят предварительную обработку, которая включает в себя следующие шаги:
– удаление искажений с изображений.
– приведение всех изображений к единому размеру и формату.
– преобразование изображений в числовые векторы, которые могут быть использованы моделью ИИ.
Предварительная обработка данных необходима для того, чтобы сделать данные более однородными и удобными для дальнейшей обработки.
3.3. Выбор модели. Для распознавания лиц используются различные модели ИИ, такие как свёрточные нейронные сети (CNN) и глубокие нейронные сети. Эти модели представляют собой математические функции, которые принимают на вход изображение лица и выдают на выходе вероятность принадлежности этого изображения к определённому человеку.
Выбор модели зависит от конкретных требований и условий задачи. Например, если требуется высокая точность распознавания, то следует использовать более сложные модели. Если же требуется быстрое распознавание, то можно использовать более простые модели.
3.4. Обучение модели. Модель обучается на предварительно обработанных данных с использованием алгоритма обучения. Алгоритм обучения определяет, как модель обновляется на основе обратной связи от данных. В процессе обучения модель «видит» множество изображений лиц и учится распознавать их особенности, такие как форма, размер и расположение глаз, носа и рта. Во время обучения модель сравнивает изображения лиц с эталонными изображениями, хранящимися в базе данных. Если изображение лица соответствует одному из эталонных изображений, то модель присваивает ему соответствующий идентификатор.
Процесс обучения повторяется многократно, пока модель не достигнет требуемой точности распознавания. После обучения модель может распознавать лица на новых изображениях с высокой точностью.
3.5. Тестирование модели. После обучения модель тестируется на новых данных, чтобы проверить её точность и эффективность. Если модель показывает хорошие результаты, она готова к использованию.
3.6. Развёртывание модели. Развёртывание модели – это заключительный этап работы искусственного интеллекта. На этом этапе модель внедряется в реальную систему распознавания лиц. Модель может быть интегрирована с другими системами, такими как системы контроля доступа, видеонаблюдения и т. п.
3.7. Распознавание лиц. Результатом распознавания является список вероятностей принадлежности изображения лица к каждому из лиц, известных модели. Чем выше вероятность, тем больше уверенность модели в том, что лицо принадлежит данному человеку.
4. Создание ИИ-модели на примере GPT.
GPT (Generative Pre-trained Transformer) – это языковая модель, которая используется для генерации текстов на основе заданного запроса.
4.1. Сбор данных. Для обучения модели GPT используются большие объёмы текстовых данных из различных источников, таких как книги, статьи, блоги и другие материалы. Эти данные используются для создания базы знаний, на которой будет основана работа модели.
4.2. Предварительная обработка данных. Собранные данные проходят предварительную обработку, которая включает в себя следующие шаги:
– удаление искажений из текстов;
– приведение всех текстов к единому формату и стилю;
– преобразование текстов в числовые векторы, которые могут быть использованы моделью ИИ.
4.3. Обучение модели. Модель GPT обучается на предварительно обработанных данных с использованием алгоритма обучения. Алгоритм обучения определяет, как модель обновляется на основе обратной связи от данных. В процессе обучения модель «видит» множество текстов и учится распознавать их структуру, стиль и тематику. После обучения модель GPT может использоваться для генерации текстов на заданные темы.
4.4. Получение запроса. Пользователь вводит запрос или тему, на которую он хочет получить текст. Это может быть что угодно: от простого вопроса до сложной задачи.
4.5. Преобразование запроса. Языковая модель преобразует запрос в формат, который она может использовать для генерации текста. Это может включать в себя токенизацию (разбиение текста на отдельные слова или фразы), лемматизацию (приведение слов к их базовой форме) и другие операции.
4.6. Использование контекста. Языковая модель использует контекст, полученный из обучения, чтобы генерировать текст, соответствующий запросу. Она анализирует структуру и стиль запроса, а также учитывает тематику и цель текста.
4.7. Генерация ответа. На основе запроса и контекста языковая модель генерирует текст. Этот текст может быть представлен в виде одного или нескольких предложений, абзацев или даже целых статей.
4.8. Оценка качества. Сгенерированный текст оценивается на соответствие заданной теме, структуре, стилю и другим критериям. Если текст соответствует требованиям, он считается качественным. Если нет, то модель может внести изменения в текст, чтобы улучшить его качество.
4.9. Повторная генерация. После доработки текст снова оценивается, и если он соответствует требованиям, то считается окончательным результатом. Если нет, то процесс повторяется до тех пор, пока не будет достигнут желаемый результат.
4.10. Вывод текста. Готовый текст выводится пользователю. Он может быть использован для различных целей, таких как общение, обучение, создание контента и т. д.
1.4. Примеры использования ИИ в различных областях
Здравоохранение
Искусственный интеллект находит широкое применение в здравоохранении, где он используется для диагностики заболеваний, прогнозирования эпидемий и оптимизации работы медицинских учреждений. Одним из наиболее популярных направлений является использование ИИ для анализа медицинских изображений, таких как рентгеновские снимки, МРТ и КТ-сканы. Алгоритмы машинного обучения позволяют врачам быстро и точно диагностировать заболевания, что особенно полезно в условиях перегруженности медицинских учреждений и нехватки квалифицированных специалистов.
Ещё одним примером использования ИИ в медицине является разработка систем поддержки принятия решений (СППР). Эти системы помогают врачам выбирать оптимальные методы лечения на основе анализа больших объёмов данных о пациентах и их заболеваниях. СППР могут учитывать множество факторов, включая возраст, пол, историю болезни и результаты лабораторных исследований, чтобы предложить наиболее эффективные и безопасные методы лечения.
ИИ также используется для прогнозирования распространения инфекционных заболеваний. Алгоритмы машинного обучения анализируют данные о заболеваемости и смертности от инфекций, а также факторы, влияющие на распространение болезней, такие как погода, плотность населения и уровень вакцинации. Это позволяет медицинским работникам разрабатывать стратегии профилактики и контроля за распространением инфекций.
Таким образом, ИИ играет важную роль в улучшении качества и доступности медицинских услуг, повышении точности диагностики и эффективности лечения, а также в предотвращении распространения инфекционных заболеваний.
Образование.
В сфере образования искусственный интеллект используется для создания персонализированных учебных планов, оценки успеваемости студентов и автоматизации административных задач. Одной из ключевых областей применения ИИ в образовании является создание персонализированных учебных планов. Используя алгоритмы машинного обучения, образовательные платформы могут анализировать данные об успеваемости и интересах каждого студента, чтобы предлагать им индивидуальные учебные планы, которые соответствуют их потребностям и целям.
Другой пример использования ИИ в образовании – это оценка успеваемости студентов. Системы ИИ могут автоматически оценивать тесты и задания, предоставляя студентам мгновенную обратную связь и помогая преподавателям отслеживать прогресс учащихся. Это не только экономит время преподавателей, но и обеспечивает более точную и объективную оценку знаний студентов [123].
Кроме того, ИИ используется для автоматизации административных задач в образовательных учреждениях. Например, системы ИИ могут управлять расписанием занятий, распределять ресурсы и отслеживать посещаемость, освобождая преподавателей и администрацию от рутинной работы и позволяя им сосредоточиться на более важных задачах. Применение ИИ в образовании имеет ряд преимуществ. Во-первых, оно позволяет сделать процесс обучения более эффективным и доступным, предоставляя учащимся персонализированные учебные материалы и поддержку. Во-вторых, оно помогает преподавателям экономить время и ресурсы, автоматизируя рутинные задачи и позволяя им уделять больше внимания индивидуальным потребностям студентов. В-третьих, оно способствует повышению качества образования, обеспечивая более точную оценку успеваемости и своевременное выявление проблем.
Однако на данном этапе системы ИИ не способны самостоятельно принимать решения в области образования, так как они не обладают достаточным для этого экспертным уровнем, на который они выйдут не раньше, чем через 15—20 лет [29].
Промышленность.
В промышленности искусственный интеллект находит широкое применение для оптимизации производственных процессов, повышения качества продукции и снижения затрат. Одним из наиболее популярных направлений является использование ИИ для автоматизации производственных линий. Системы ИИ могут контролировать работу оборудования, отслеживать качество продукции и оптимизировать производственные процессы, что приводит к повышению производительности и снижению брака.
Ещё одним примером использования ИИ в промышленности является прогнозирование отказов оборудования. Алгоритмы машинного обучения могут анализировать данные о работе оборудования и предсказывать возможные отказы до их возникновения, что позволяет проводить профилактическое обслуживание и предотвращать простои. Это не только снижает риск аварий, но и увеличивает срок службы оборудования.
Также ИИ используется в промышленности для оптимизации логистики и управления цепочками поставок. Системы ИИ могут анализировать данные о запасах, заказах и транспортных расходах, чтобы определить наиболее эффективные маршруты доставки и графики производства, что способствует снижению затрат и повышению уровня обслуживания клиентов. Кроме того, ИИ применяется в промышленности для улучшения качества продукции. Алгоритмы компьютерного зрения могут использоваться для контроля качества продукции на производственных линиях, что позволяет быстро обнаруживать дефекты и принимать меры по их устранению. Это помогает повысить качество продукции и снизить количество возвратов от клиентов.
Наконец, ИИ может помочь предприятиям адаптироваться к изменяющимся рыночным условиям. Системы прогнозирования спроса на основе ИИ могут анализировать исторические данные о продажах и текущие тенденции рынка, чтобы предсказать будущий спрос на продукцию предприятия. Это позволяет предприятиям более точно планировать производство и запасы, что помогает им оставаться конкурентоспособными на рынке.