Оценить:
 Рейтинг: 4.67

Статистика. Ответы на экзаменационные билеты

<< 1 2 3 4 5 6 7 8 9 ... 14 >>
На страницу:
5 из 14
Настройки чтения
Размер шрифта
Высота строк
Поля

 то,

8. Средняя гармоническая, геометрическая, квадратическая, степенная

При решении задач расчет средней величины начинается с составления исходного отношения – логической словесной формулы средней. Она составляется на основе теоретического и логического анализа. Иногда среднюю арифметическую нельзя использовать. В этом случае в зависимости от ситуации применяется одна из трех форм средней.

Средняя гармоническая простая строится по формуле:

где n — число единиц совокупности или число вариантов;

х — значения варьирующегося признака.

Средняя гармоническая простая используется для несгруппированных данных.

Средняя гармоническая взвешенная строится по формуле:

где х — значения варьирующего признака;

m — веса;

n — число единиц совокупности. Среднюю гармоническую взвешенную используют для сгруппированных данных, т. е. когда каждое значение х повторяется различное число раз.

Средняя квадратическая простая строится по формуле:

где n — число единиц совокупности или число вариантов; х — значения варьирующегося признака.

Средняя квадратическая простая используется для несгруппированных данных.

Средняя квадратическая взвешенная строится по формуле:

где m – веса;

х – значения варьирующего признака.

Среднюю квадратическую взвешенную используют для сгруппированных данных.

Данные формулы используются редко, в специальных расчетах.

Средняя геометрическая простая строится по формуле:

где n – число единиц совокупности или число вариантов;

х – значения варьирующегося признака. Средняя геометрическая простая используется для несгруппированных данных.

Средняя геометрическая взвешенная строится по формуле:

где х – значения варьирующего признака;

m – веса;

n – число единиц совокупности или число вариантов. Различные формулы средних величин можно объединить в одной формуле – формуле степенной средней:

где р – порядок средней.

9. Медиана и мода. Асимметрия распределения

МедианойМ

называется варианта, которая делит ранжированный вариационный ряд на две равные части, из которых значение одной половины меньше медианы, а значения другой – больше медианы.

Медиана для несгруппированных данных при нечетном числе вариантов (n = 2k+ 1), определяется как M

= x

, а при четном числе вариантов (n = 2k), медиана определяется по формуле:

Медиана для сгруппированных данных рассчитывается по формуле:

где х

– это нижняя граница медианного интервала;

/– величина медианного интервала;

em / 2 – полусумма всех частот;

S

– накопленная частота, предшествующая медианному интервалу;

m

– частота медианного интервала.

Медиана рассчитывают наряду со средней величиной или вместо нее, когда в ряду данных присутствуют открытые или неравные интервалы. Это не влияет на точность медианы, однако, влияет на точность величины.

МодойМ

называется варианта, которая имеет наибольшую частоту по сравнению с другими частотами. В дискретно-вариационном ряду мода – это та варианта, которой соответствует наибольшая частота.

В интервальном вариационном ряду с равными интервалами моду определяют по формуле:

где х

– это нижняя граница модального интервала;

h – величина модального интервала;

d
<< 1 2 3 4 5 6 7 8 9 ... 14 >>
На страницу:
5 из 14