Оценить:
 Рейтинг: 0

Беларусь 2020: наука и экономика

Год написания книги
2015
<< 1 ... 4 5 6 7 8 9 >>
На страницу:
8 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля

Для создания условий развития данных направлений необходимо:

1. Обеспечить благоприятные условия для развития существующих и создания новых субъектов инновационной инфраструктуры путем:

развития кадровой, материально-технической и финансовой базы субъектов инновационной инфраструктуры;

активизации процесса образования крупных корпораций по наукоемким высокотехнологичным направлениям в кооперации на условиях аутсорсинга с малым и средним бизнесом;

создания ассоциации субъектов инновационной инфраструктуры.

2. Совершенствовать критерии отбора инновационных товаров с учетом приоритетов научной и научно-технической деятельности, унифицировать подходы к формированию перечней инновационных и высокотехнологичных товаров.

3. Усовершенствовать систему отбора проектов в рамках республиканского конкурса инновационных проектов, а также систему продвижения идей талантливых и перспективных специалистов.

4. Обеспечить финансирование за счет средств республиканского бюджета и инновационных фондов прорывных инновационных проектов, направленных на структурные изменения экономики страны.

5. Сформировать с участием Белорусского инновационного фонда специализированные отраслевые венчурные фонды (в форме образования по аналогии Белорусского инновационного фонда или в организационно-правовой форме обществ с ограниченной ответственностью), уставный капитал которых должен включать как долю государства, так и долю организаций, участвующих в реализации проектов.

6. Активизировать научно-техническую деятельность в регионах путем взаимодействия основных секторов науки и промышленности регионов в реализации региональных научно-технических программ.

4.2.3. Нанотехнологии и наноматериалы

Анализ научно-технического потенциала Беларуси позволяет выделить следующие перспективные направления

в сфере разработки и коммерциализации нанотехнологий и производства нанотехнологической продукции: наноматериалы; сенсорика и диагностика; наноэлектроника и солнечные элементы; приборостроение; фильтры и мембраны; фармпрепараты.

В прогнозном периоде научные исследования и разработки будут сконцентрированы на создании:

наноструктурных конструкционных материалов и покрытий для узлов трения, работающих при повышенных нагрузках и температурах, для карьерных самосвалов, автомобилей, тракторов, горношахтного, металлургического, теплоэнергетического и станочного оборудования, сельскохозяйственной техники, железнодорожного транспорта на основе использования управляемых структурно-фазовых превращений в метастабильных системах в режиме самоупрочнения;

коллоидно-стабильных жидких и пластичных смазочных материалов с высокой несущей способностью, расширенным диапазоном рабочих температур и увеличенным ресурсом для тяжелонагруженных трибосопряжений машин и оборудования на основе их модифицирования наноразмерными частицами углеродных материалов, оксидов, порошков металлов;

наноструктурных инструментальных материалов для прецизионной и высокоскоростной обработки труднообрабатываемых материалов и покрытий;

конструкций режущего инструмента из наноструктурных композитов на основе сверхтвердых материалов и оптимизации режимов резания при лезвийной обработке закаленных сталей и чугунов.

Будут разработаны и внедрены в производстве нанотехнологий:

оборудование технологического уровня 65 нм (с поэтапным переходом на 45 и 22 нм) для промышленного применения в микроэлектронном производстве нового поколения;

наноразмерные структуры и покрытия, в том числе на полупроводниковых пластинах;

магнитные, сегнетоэлектрические, полупроводниковые, сверхпроводящие, радиационно стойкие, квантоворазмерные, нелинейнооптические и сверхтвердые материалы;

новые плазменные технологии для применения в биологии, медицине, диагностике, синтезе наноматериалов, продвижения в решении проблемы нагрева и удержания плазмы, в том числе для задач управляемого термоядерного синтеза.

Разработка сенсорных платформ на основе наноструктурированных материалов для высокочувствительных химических и биохимических сенсоров и микросистем на их основе позволит:

создать на основе химических (газовых) сенсоров миниатюрные противопожарные сигнализаторы, встраиваемые в различные малогабаритные устройства, например в мобильный телефон;

изготовление биохимических сенсоров многократно ускорит диагностику вирусных заболеваний и в некоторых случаях обеспечит многократное использование сенсоров, что сейчас сделать невозможно;

осуществлять непрерывный дистанционный контроль состояния больного по анализу выдыхаемых им газов.

4.2.4. Лазерно-оптические и оптоэлектронные технологии

Лазерная техника играет центральную роль в происходящих в последнее время изменениях технологического уклада, которые связаны с резким повышением гибкости и мобильности производства, энергоэффективностью, снижением издержек и, одновременно, выходом на новый уровень качества продукции. Материально-техническая база информационных технологий есть прямой продукт развития и использования лазерной физики и лазерно-оптических технологий в виде волоконно-оптических линий связи и фотолитографии субмикронных размеров, обеспечившей возможность создания современной компьютерной и другой техники, запись и считывание информации.

Исходя из потребностей национальной экономики, наличия кадров и материально-технической базы, к наиболее перспективным направлениям работ в области лазерных и оптических технологий относятся следующие:

фундаментальные проблемы лазерной физики и взаимодействия лазерного излучения с веществом;

твердотельные лазерные системы с широко варьируемыми параметрами, в том числе с диодной накачкой и волоконные, и технологии на их основе;

новые образцы лазерной и оптоэлектронной техники для промышленности, приборостроения, медицины, экологии, метрологии, космических исследований, научных исследований и для решения специальных задач;

новые лазерные и нелинейно-оптические материалы; технологии выращивания монокристаллов, стекловарения, изготовления оптических деталей;

высокочувствительные аналитические и диагностические методы и приборы с использованием лазеров и других источников оптического излучения;

нанофотоника;

квантовая информатика;

наукоемкие лазерно-информационные технологии обработки материалов;

фотовольтаика (солнечные элементы и модули; датчики-фотоприемники, в т. ч. приемные линейки и матрицы);

микронная оптоэлектроника (в т. ч. гибридные микро-, оптоэлектронные устройства) для систем обработки информации, СВЧ-техники и др.;

голографические средства и методы и их применение в оптоэлектронных и лазерных технологиях, в том числе для защиты от подделок ценных бумаг, документов и другой продукции;

развитие современных ростовых технологий гетеро-структур как основы новейших разработок в области оптоэлектроники, микроэлектроники, СВЧ-техники и лазерных технологий;

наращивание выпуска оптико-механических, оптико-электронных и лазерно-оптических изделий, отвечающих требованиям мировых рынков, что позволит увеличить экспорт продукции;

создание и освоение в производстве оптоэлектронной техники на базе лазерных систем с применением электронно-оптических преобразователей и высокоточных оптических компонентов, включая лазерные приборы для технологических процессов в промышленности, что позволит применять современные высокоточные методы измерения и обработки поверхностей деталей;

создание тепловизионной техники специального и двойного назначения на базе фотоприемных устройств инфракрасного диапазона третьего поколения;

производство оборудования для оптики, светодиодной и фотогальванической техники, светодиодных осветительных и сигнальных устройств и систем;

техническое переоснащение организаций отрасли с доведением их технического состояния до уровня технической оснащенности аналогичных организаций промышленно развитых государств.

Предполагается разработать и освоить в производстве следующие высокотехнологичные виды продукции:

новые светодиодные модули монохромного и «белого» излучения на основе промышленных светодиодов и светодиодных чипов с улучшенными характеристиками;

адаптированные к чувствительности человеческого глаза кремниевые фотоприемники и интегральные схемы для систем управления освещенностью люминесцентных ламп;
<< 1 ... 4 5 6 7 8 9 >>
На страницу:
8 из 9