Оценить:
 Рейтинг: 0

Трудные вопросы фитнеса. Практическая теория

Жанр
Год написания книги
2022
<< 1 2 3 4 >>
На страницу:
3 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

Окисление жирных кислот очень эффективно в плане количества получаемой энергии на единицу окисляемого субстрата – эффективнее, чем аэробное окисление глюкозы, однако медленнее и требует большего количества кислорода. Поэтому используется для энергоснабжения организма в состоянии покоя или при совсем лёгкой мышечной работе (окисление жирных кислот поставляет до половины энергии в этих условиях), а при возрастании её интенсивности энергообеспечение мышечных сокращений переключается в основном на глюкозу в качестве субстрата для окисления.

Тем не менее в условиях продолжительной аэробной нагрузки, на фоне истощения запасов глюкозы и гликогена повышается доля окисления жирных кислот. При этом на фоне преобладания симпатических влияний (см. «Вегетативная нейрогуморальная регуляция: стресс и восстановление») активизируется расщепление жира в жировых депо, выход жирных кислот в кровь и их транспортировка в мышечные клетки. Также активному окислению жирных кислот способствуют: диета с дефицитом калорий, аэробные тренировки натощак, аэробная нагрузка сразу после короткой и умеренной анаэробной (всё это обуславливает пониженный запас гликогена в мышцах и печени перед началом аэробной нагрузки и, как следствие, более активное использование жирных кислот), воздержание от пищи в течение получаса-часа после тренировки (чтобы жирные кислоты, которые оказались в крови во время тренировки, были использованы и сразу после неё, а не вернулись в жировые депо).

Однако в практическом контексте диеты и тренировок для похудения стоит отметить и то, что важно не столько «сжигание» жира на тренировках, сколько отрицательный баланс прихода-расхода любой энергии в течение суток (дефицит калорий), который обеспечивает активное расщепление и использование жира в энергетических процессах и в состоянии покоя.

Увеличивать использование жирных кислот в энергетических процессах как с целью повышения аэробной производительности (выносливости) в спорте, так и просто в рамках похудения пытаются и приёмом добавок карнитина (L-карнитин) – вещества, ответственного за внутриклеточный транспорт жирных кислот в митохондрии.

Окисление аминокислот

При нехватке глюкозы и жирных кислот субстратом для аэробного окислительного пути энергопродукции (окислительного фосфорилирования) могут быть и аминокислоты, поступая как из белков пищи, так и вследствие разрушения белковых структур мышц. А также при повышении концентрации аминокислот в крови (вследствие повышенного разрушения мышечных белков или чрезмерного потребления белков с пищей) может происходить превращение части из них в глюкозу (глюконеогенез в печени) с последующим её использованием по назначению.

Потеря мышц обычно связана с голоданием – когда из-за нехватки энергии и повышенной активности катаболических гормонов и реакций разрушаются мышечные белки, и освободившиеся аминокислоты активно используются для восполнения недостающей организму энергии. Также естественное повреждение / разрушение мышечных структур связано с высокоинтенсивными (анаэробными) мышечными сокращениями (см. «Стрессовые факторы роста мышц»), поэтому диета с дефицитом калорий для похудения и силовые тренировки плохо сочетаются друг с другом (см. «Почему силовые тренировки не для похудения») – при таком сочетании получается двойной фактор катаболизма мышц и ни одного их восстановления, что может приводить к значительным потерям мышечной массы вместе с жиром (а не росту мышц и потере жира одновременно, как это нередко мечтается и пропагандируется в фитнесе, см. «Почему невозможно „сжигать“ жир и наращивать мышцы одновременно»). Тем не менее высокоинтенсивные силовые нагрузки возможны на «сушке» (см. «Различия силовых тренировок при просто похудении и на „сушке“»), точнее – именно на сушке они необходимы как фактор сохранения ранее набранных мышц, но они должны быть именно и только сохраняющими (поддерживающими) для силовых показателей и, соответственно, мышечной массы, не более того, иначе будет обратный результат.

Снизить катаболизм мышц на дефиците калорий пытаются повышенным потреблением белка с пищей, в т.ч. с помощью белковых добавок. Дополнительно см. «Азотистый баланс и белковый обмен».

N.B. Анаэробный гликолиз, окислительное фосфорилирование, восстановление АТФ за счёт креатинфосфата – всё это происходит в любых клетках (волокнах) скелетной мускулатуры. А дифференцируются мышечные волокна на быстрые и медленные (анаэробные и аэробные) в т.ч. по тому признаку, какой из путей энергообеспечения (анаэробный гликолиз или аэробное окисление) является в них основным. Дополнительно см. «Аэробные и анаэробные нагрузки».

Вегетативная нейрогуморальная регуляция: стресс и восстановление

В статье рассмотрена вегетативная нейрогуморальная регуляция, обеспечивающая как выполнение физической нагрузки, так и восстановление после неё. Рассмотрены некоторые гормоны и их эффекты, обозначены некоторые теоретические и практические нюансы.

Определение

Головной и спинной мозг относятся к центральной нервной системе (ЦНС), а нервы и нервные узлы, отходящие от ЦНС к органам и тканям, – к периферической. Основной структурной и функциональной единицей является нервная клетка – нейрон. Нейроны образуют скопления (головной и спинной мозг, нервные узлы), а их длинные отростки (нервы или нервные волокна) связывают их между собой и идут ко всем органам тела для иннервации и обратной связи. Воспринимая химические, физические и механические воздействия (раздражения) из внутренней и внешней среды, одни нервы преобразуют их в нервные импульсы и передают в ЦНС, где эта информация о параметрах внутренней и внешней среды, состоянии и деятельности органов обрабатывается, а по другим нервам передаются управляющие нервные импульсы из ЦНС к органам. По сути всё сводится к процессам возбуждения и торможения. Таким образом нервная система контролирует, регулирует и согласует работу всего организма как целого.

Нервные импульсы, или сигналы, имеют электрохимическую природу. По нервным волокнам распространяется возбуждение – ионные токи (см. «Словарик терминов и определений»), и передаётся между нейронами или на иннервируемые органы и ткани с помощью химических посредников – нейромедиаторов, выделяемых в нервных окончаниях – синапсах. Нейромедиатор связывается с рецепторами (см. «Словарик терминов и определений») на постсинаптической мембране иннервируемой клетки, в результате чего изменяется состояние её ионных каналов и транспорт ионов через мембрану – кратковременно изменяется поляризация клетки (по сравнению с состоянием покоя). Так и происходит возбуждение или торможение (зависит от конкретного медиатора, ионных каналов и ионов) и, соответственно, стимуляция или угнетение выполнения клетками их специфических функций (сокращения мышечной клетки, проведения импульса нервной, выработки секрета железистой и т.п.). После выделения в синапсе нейромедиатор так или иначе инактивируется (как и гормоны, см. ниже). Для подержания возбуждения того или иного уровня, той или иной продолжительности нужна соответствующая по силе, частоте и продолжительности нервная импульсация.

Вся нервная система делится на соматический и вегетативный отделы. Соматический ответственен за анализ ситуации, поведение и произвольные движения тела в пространстве (произвольные сокращения и расслабления скелетной мускулатуры). А вегетативный – за гладкую мускулатуру сосудов, внутренних органов, различные железы, обмен веществ (автоматически поддерживая гомеостаз и ситуативно приспосабливая и регулируя их работу, в соответствии с генетической программой – не подчиняясь произвольному контролю).

Вегетативный отдел нервной системы (ВНС), в свою очередь, состоит из двух подотделов – симпатического и парасимпатического. Симпатический и парасимпатический подотделы иннервируют одни и те же органы и ткани, но вызывают противоположные эффекты в них, дополняя друг друга и обеспечивая базовое равновесие или нужное преобладание активности одних органов и процессов при параллельном снижении активности других в зависимости от ситуации (приспособительные реакции). Соответственно, парасимпатическая иннервация в одних органах и тканях обеспечивает торможение (которое не всегда равно угнетению всех процессов клетки), а в других – возбуждение, так же и симпатическая иннервация, но в каждом конкретном случае действие симпатической и парасимпатической систем противоположно. Например, симпатическая иннервация повышает ЧСС, а парасимпатическая – снижает; симпатическая иннервация угнетает пищеварение, а парасимпатическая – активирует; симпатическая иннервация повышает уровень обмена веществ (больший катаболизм), а парасимпатическая – понижает (больший анаболизм), и т. д. и т. п.

К иннервируемым органам в т.ч. относятся эндокринные железы, секретирующие гормоны – биологически активные вещества, которые, попадая в кровь, разносятся по всему организму, так же тормозя или усиливая активность тех или иных органов и процессов (действуя на соответствующие рецепторы или ферменты / ферментные системы) синергично с нервной регуляцией – это гуморальная регуляция (т.е. через жидкую внутреннюю среду организма). Оказав действие на органы/ткани/клетки-мишени, гормоны разрушаются (инактивируются). Эндокринная система дополняет нервную систему, отсюда и название – нейрогуморальная регуляция. Активность самих эндокринных желёз, помимо прямой иннервации, регулируется также и гуморально – тропными гормонами гипофиза (центральной эндокринной железы, расположенной в головном мозге), стимулирующими периферические эндокринные железы на выработку своих гормонов. Гипофиз, в свою очередь, контролируется гипоталамусом (участком головного мозга), секретирующим нейрогормоны, стимулирующие или угнетающие секрецию и высвобождение тропных гормонов гипофиза. А саморегуляция эндокринной системы осуществляется её же гормонами по принципу обратной связи через центральные и периферические механизмы. Так, повышение концентрации какого-либо гормона в крови, через рецепторы обратной связи сразу приводит в действие механизмы отрицательной обратной связи (начиная от рецепторных периферических до центральных гипофизарных и гипоталамических), в результате чего его секреция, высвобождение и чувствительность к нему угнетаются; и наоборот – снижение концентрации гормона в крови стимулирует его выработку и высвобождение, повышает количество и чувствительность к нему рецепторов на/в клетках-мишенях.

Кстати, эти механизмы саморегуляции в эндокринной системе обуславливают феномен подавления собственной выработки тестостерона организмом при введении экзогенного – АС (см. «Словарик терминов и определений»), равно как и восстановление со временем собственного производства тестостерона организмом после отмены АС. А также феномен снижения эффекта АС при длительном приёме высоких дозировок без перерывов.

Гуморальная регуляция деятельности органов и систем для приспособительных реакций или поддержания базовых параметров гомеостаза осуществляется не только гормонами, но и другими факторами – газы крови, метаболиты. Например: повышение в крови концентрации углекислого газа и других метаболитов биологического окисления вызывает раздражение дыхательного центра в ЦНС и, рефлекторно, дыхание усиливается, и наоборот – снижение углекислоты в крови приводит к снижению ЧД и ГД; повышение в крови глюкозы и других пищевых метаболитов стимулирует секрецию и высвобождение инсулина поджелудочной железой, который утилизирует их в клетки тканей, и наоборот – снижение в крови глюкозы ниже нормы стимулирует секрецию и высвобождение контринсулярных катаболических гормонов (глюкагон, адреналин, кортизол и др.), которые активируют гликогенолиз и глюконеогенез, и, соответственно, глюкоза в крови повышается.

Стресс

Симпатическая нервная система и дополняющие её гормоны активизируют процессы распада / окисления эндогенных запасов органических веществ – белков, жиров и углеводов (в виде мышц, жировой ткани и гликогена), и, соответственно, выделения энергии (см. «Энергетика при мышечной деятельности»), угнетая при этом процессы синтеза и запасания веществ. Усиливают работу сердечно-сосудистой и дыхательной систем, угнетая при этом пищеварительную систему.

Всё это нужно для обеспечения выполнения мышечной работы и/или выживания в неблагоприятных условиях (т.е. в любых стрессовых ситуациях). Симпатическая активация может происходить как непосредственно при произвольном повышении двигательной активности – для энергообеспечения осуществляемой мышечной работы, так и заранее – когда психическое возбуждение на основании анализа ситуации приводит к активации симпатических реакций, т.е. организм готовится к возможным физическим напряжениям.

Соответственно, дополняющие симпатическую иннервацию гормоны в основном катаболические – это норадреналин, адреналин, кортизол (надпочечники), глюкагон (поджелудочная железа), соматотропин (гипофиз), а также другой тропный гормон гипофиза – АКТГ, посредством которого он стимулирует надпочечники, также имеющий и самостоятельную физиологическую роль при стрессе (во многом совпадающую с эффектами перечисленных гормонов). Кроме того, норадреналин является и гормоном, и нейромедиатором непосредственной симпатической иннервации большинства органов и тканей. Влияние этих гормонов и медиаторов при симпатической активации приводит к следующим эффектам:

адреналин и норадреналин повышают ЧСС и ЧД, АД, при этом возрастает кровоток в мышцах и потребление кислорода; активизируют распад гликогена (гликогенолиз) в печени, повышая глюкозу в крови; усиливают гликолиз (внутриклеточное окисление глюкозы); активируют соответствующие ферменты в жировых клетках, запуская липолиз (расщепление жира в жировых депо с выходом жирных кислот в кровь и последующим их окислением в мышечных клетках, дополнительно см. «Энергетика при мышечной деятельности»);

кортизол, с одной стороны, повышает чувствительность клеток к адреналину и норадреналину, снижает болевые пороги и воспалительные реакции, а с другой – несколько угнетает гликолиз и гликогенолиз, активируя при этом распад белков мышечной ткани (протеолиз) и синтез глюкозы из аминокислот (глюконеогенез) в печени, тем самым повышая глюкозу в крови, а также способствуя её отложению в гликоген и жир (эти эффекты повышенной секреции кортизола, направленные на сохранение и перераспределение энергии, в дополнение к эффектам адреналина важны для преодоления продолжительной нагрузки / выживания в длительно неблагоприятных условиях, но в реалиях современных стрессов часто сомнительны в плане физиологической обоснованности и скорее нежелательны);

глюкагон в основном активирует расщепление гликогена печени для повышения глюкозы в крови, а также, как и адреналин, оказывает активирующее действие на ферменты липолиза;

соматотропин (гормон роста), дополнительно секретируемый гипофизом при стрессе, напрямую способствует липолизу, через разные механизмы повышению глюкозы в крови, в этом контексте активно взаимодействуя с вышеперечисленными гормонами.

Пара практических моментов. (1) Почти все комплексные жиросжигатели и предтренировочные комплексы из категории спортивного питания содержат те или иные психостимуляторы, которые могут приводить к симпатической активации, т.е. готовности / мотивации к физическим нагрузкам, либо являясь агонистами адренергических рецепторов, либо так или иначе повышая выброс катехоламинов (адреналина, норадреналина, дофамина). (2) Если стрессовые катаболические реакции не сопровождаются физическими нагрузками и расходом энергии (психоэмоциональные стрессы на фоне сидячего образа жизни, например), кортизол может способствовать преобразованию имеющейся мышечной массы в жировую – разрушая мышечные белки для превращения их в глюкозу, которая, не будучи израсходованной на мышечную работу, конвертируется в жир.

Естественно, вышеперечисленные катаболические гормоны, секретируемые в повышенном количестве при активации симпатической нервной системы, также имеют и постоянную небольшую секрецию и/или её суточные ритмы, постоянно присутствуя в крови. Они всегда необходимы и в состоянии относительного покоя для регуляции множества процессов и поддержания гомеостаза, т.е. потребность в них не ограничивается стрессовыми реакциями. Повышенная или пониженная базовая секреция того или иного гормона – это уже медицинская проблема, находящаяся за рамками данной статьи (но вообще, к слову, повышенный кортизол в пределах нормы, т.е. когда медицинской проблемы ещё нет, к тому же неумеренно повышающийся при стрессах, может быть проблемой и при наращивании мышц, и при избавлении от лишнего жира, поэтому в фитнесе часто имеет репутацию «абсолютного зла»).

Адреналин и мышцы

Хотя адреналин и норадреналин всячески способствуют энергообеспечению мышечной работы, положительно влияя на трофику и энергетику скелетных мышц (как гуморально, так и вследствие прямой симпатической иннервации), как следует из вышеизложенного, влияние на силу мышечных сокращений не так однозначно. Медиатором нервно-мышечной передачи в синапсах соматических двигательных нервов (см. «Словарик терминов и определений» – Двигательная единица) является не норадреналин, а ацетилхолин (который, к слову, является основным нейромедиатором парасимпатической иннервации).

В разных источниках и контекстах мне встречалась информация, что повышенная активность адреналина / норадреналина и адренергических структур может: (1) улучшать нервно-мышечную передачу, стимулируя выделение ацетилхолина из синапсов двигательных нервов; (2) никак практически не влиять на нервно-мышечную передачу и, соответственно, сократительную способность мышц, улучшая только трофику и энергетику мышц; (3) ухудшать холинергическую нервно-мышечную передачу, ингибируя выделение ацетилхолина из синапсов; (4) как облегчать мышечные сокращения, так и угнетать их через разные прямые и опосредованные механизмы, а результирующее действие зависит от ряда факторов.

Зависеть это может от (между одинаковыми порядковыми номерами пунктов выше и ниже нет прямой причинно-следственной взаимосвязи): (1) типа нервной системы (силы и соотношение процессов возбуждения и торможения); (2) особенностей локализации и соотношения разных типов альфа- и бета-адренорецепторов (см. «Словарик терминов и определений») в скелетных мышцах и на их двигательных холинергических нервах; (3) в контексте предыдущего пункта и влияний прямой иннервации скелетных мышц симпатическими нервами, которые, входя в мышцы, иннервируют не мышечные волокна, а кровеносные сосуды, но побочно могут воздействовать на близко расположенные адренорецепторы двигательных нервов и мышечных клеток; (4) особенностей эмоциональной реакции на стресс (страх, гнев) и, возможно, разных концентраций и соотношений симпатических гормонов / медиаторов (тот же адреналин и норадреналин не во всём действуют одинаково), их возможных взаимодействий и др. факторов.

Как бы там ни было, на практике мы можем наблюдать три варианта индивидуальной реакции на стресс (бей, беги, замри): у кого-то сила вырастет в разы; у кого-то повысится в основном выносливость; а кого-то почти парализует, мышцы станут «ватными». Таким образом, ничего не остаётся кроме как сделать вывод о наличии индивидуальных, генетически обусловленных особенностей нервной системы и нейрогуморальной регуляции, которые и определяют влияние стрессовых реакций на силу мышечных сокращений. В качестве практического примера можно привести следующее. Известны случаи, когда при встрече с медведем в лесу люди замирали от страха, мышцы становились «ватными» и неспособными ни к каким сокращениям. В то же время известны случаи, когда в этой же ситуации люди, далеко не спортсмены, от страха легко перемахивали 3-х метровый забор – мощность мышечных сокращений повышалась в разы – до недоступного в спокойном состоянии уровня. Таким образом, это яркая иллюстрация индивидуальной реакции на адреналин – кого-то он делает беспомощным и слабым, а кому-то, наоборот, значительно увеличивает мышечную силу.

В чём практика понимания разной реакции на адреналин, для спортивных тренировок? Во многом, например, в использовании или неиспользовании предтренировочных комплексов (уже упомянутых выше), каких и когда. Если предтреник сильный симпато / адреномиметик, а индивидуальная реакции на выброс адреналина выражается в параличе и замирании, будет очень опрометчиво принять его перед определением своего одноповторного максимума в жиме лёжа или приседе, например.

Гормоны щитовидной железы

С ролью щитовидной железы и её гормонов в симпатической активации при стрессе всё не менее сложно, чем с адреналином и мышечными сокращениями. Противоположные влияния на щитовидку при стрессе могут как угнетать, так и активизировать гормонообразование в ней (возможное снижение секреции ТТГ гипофизом на фоне повышения секреции АКТГ, т.е. снижение прямой гуморальной стимуляции, с одной стороны, и возможная стимуляция в рамках симпатической активации через другие прямые и опосредованные нейрогуморальные механизмы, с другой стороны). При этом увеличение в крови концентрации её гормонов (двух из трёх, третий только регулирует уровень кальция), повышающих основной обмен – усиливающих внутриклеточные энергетические процессы, увеличивающих ЧСС, ЧД и температуру тела, должно хорошо укладываться и в рамки реакции на стресс (синергично со стрессовыми гормонами и медиаторами). Но насколько это имеет место и практически значимо, учитывая и двоякое влияния стресса на активность щитовидной железы, – остаётся вопросом для меня.

Кроме того, гормоны щитовидки вообще могут стоять особняком, учитывая их физиологическая роль. Несмотря на катаболическое действие они, как я понимаю, не подавляют активность анаболических гормонов, т.е. не являются их физиологическими антагонистами, в отличие от того же адреналина и кортизола. Т.е. говоря об активизации внутриклеточных энергетических / окислительных процессов под их влиянием (мишенями для них являются в основном митохондрии), нужно помнить, что вырабатываемая энергия необходима в т.ч. на анаболические процессы биологического синтеза (см. «Пищевые вещества, обмен веществ и энергетический баланс») и вообще функционирование всех органов и систем, а не только на мышечные сокращения в стрессовых ситуациях. Возможно поэтому, кстати, недостаточная функция щитовидной железы в период роста организма (в детском возрасте) приводит к серьёзным патологиям развития.

Что доподлинно известно: (1) чрезмерные стрессы (психоэмоциональные, перетренированность и т.п.) неполезны для щитовидки и могут приводить к нарушениям её нормальной работы; (2) щитовидная железа своими гормонами постоянно и непосредственно регулирует основной обмен, поэтому при их недостатке или переизбытке, вследствие нарушения основного обмена могут возникать серьёзные проблемы как при избавлении от лишнего жира, так и при наращивании мышечной массы, вплоть до невозможности этого. Поэтому перед началом похудения или набора веса имеет смысл проверить функцию щитовидной железы – сдать анализ на тиреотропный гормон (ТТГ) гипофиза и непосредственно гормоны щитовидки (Т3 и/или Т4).

Восстановление

Парасимпатическая нервная система и дополняющие её гормоны активизируют работу органов и процессов, ответственных за размножение, переваривание и усвоение пищи, синтез и запасание эндогенных белков, жиров, углеводов и других органических соединений (в виде мышц, жировой ткани и гликогена, клеточных структур, ферментов и др. жизненно важных веществ), угнетая при этом интенсивность катаболических реакций распада. Снижает АД, ЧСС и ЧД до уровня покоя.

Парасимпатическая активность, как и симпатическая (подвижный баланс между ними), в принципе нужна всегда для поддержания жизнедеятельности и структурной целостности организма, а её преобладание необходимо после стресса – для восстановления организма, восполнения потраченных энергетических ресурсов, ремонта / восстановления повреждённых / разрушенных клеточных структур, ферментов и т. п.

Соответственно, дополняющие парасимпатическую иннервацию гормоны – анаболические, среди которых наиважнейший – инсулин поджелудочной железы, обеспечивающий транспорт аминокислот, глюкозы и жирных кислот из крови в клетки тканей и стимулирующий внутриклеточный биосинтез. Инсулин всегда повышается во время и после приёма пищи – для утилизации (усвоения клетками) поступающих из ЖКТ питательных веществ.

Имеет смысл рассматривать как гормон постнагрузочного восстановления и тестостерон, который образуется в яичках (у мужчин), яичниках (у женщин, но, конечно, в меньших количествах) и надпочечниках (у мужчин и женщин), а также при периферическом метаболизме в других органах и тканях. Помимо андрогенного влияния (на мужские половые органы и признаки) тестостерон обладает выраженным анаболическим действием, связанным с прямой стимуляцией внутриклеточного синтеза белков, также оказывая и другие регулирующие воздействия на обмен веществ (поэтому вырабатывается и нужен и в мужском, и в женском организме). Эндогенная секреция тестостерона имеет суточные ритмы и дополнительно повышается после силовых тренировок, для поддержки пластических / репаративных процессов.

Именно синтетический тестостерон, точнее, чаще его производные в виде фарм. препаратов (см. «Словарик терминов и определений» – АС), является основой наращивания силы и массы мышц во всех силовых видах спорта и не только, и особенно бодибилдинга как мужского, так и женского.

Тестостерон и стресс

Выше я обозначил тестостерон как гормон постнагрузочного восстановления, однако в фитнесе распространено и популярно другое мнение – что тестостерон повышается в крови не после, а непосредственно во время масштабной анаэробной (силовой) нагрузки (о нагрузках см. «Аэробные и анаэробные нагрузки»).

Это не кажется мне логичным и достаточно обоснованным – с чего тестостерону повышаться во время нагрузки, т.е. стресса? При выраженной симпатической активности гипофизом в основном продуцируется АКТГ и снижается продукция ЛГ (лютеинизирующего гормона, стимулирующего выработку тестостерона яичками), вследствие чего деятельность половых желёз и секреция тестостерона в них угнетена. А надпочечникам тоже не до этого – под влиянием АКТГ они активно секретируют адреналин и кортизол, являющиеся в больших концентрациях физиологическими антагонистами тестостерона (их повышение в крови приводит к снижению синтеза тестостерона). Так откуда, с чего и зачем повышаться тестостерону в крови во время нагрузки / стресса? Тестостерон точно не является симпатическим стрессовым гормоном, и повышение его секреции логично предположить после физической нагрузки – при переходе организма в парасимпатическое состояние для процессов восстановления после неё.

Впрочем, не буду полностью исключать возможность повышения тестостерона и во время нагрузки – как гормона в нервной системе участвующего в психической активации (мотивации, агрессии). Но, учитывая вышесказанное, только во время очень кратковременной силовой нагрузки или в самом её начале – когда ещё не доминируют тотально и стабильно адреналин и кортизол, а потом повышение тестостерона всё же маловероятно, а вероятно только его снижение во время выполнения нагрузки. По большому счёту не столь важно, конечно, когда повышается секреция тестостерона – после или во время силовой нагрузки, если речь идёт о тренировках для наращивания силы и массы мышц, – повышается и хорошо.

Другое дело ещё одна популярная, но опять же сомнительная идея в фитнесе – о пользе силовых тренировок при похудении в контексте именно того, что они стимулируют выработку тестостерона, а он якобы поможет наращивать мышцы и худеть одновременно. О физиологической невозможности этого в принципе см. «Почему невозможно „сжигать“ жир и наращивать мышцы одновременно», а сомнительность повышения тестостерона вследствие силовых тренировок на дефиците калорий логически следует и из вышеизложенного. Как и тренировка (нагрузка), дефицит калорий – это стресс, только постоянный – на весь период похудения (и не такой сильный, просто результирующее преобладание катаболизма над анаболизмом за сутки), и обеспечивает мобилизацию собственных жировых запасов организма благодаря стабильному преобладанию симпатической активности, главными «действующими лицами» которой являются адреналин и кортизол, которые, как уже было сказано, являются физиологическими антагонистами тестостерона. При добавлении на этом фоне ещё и силовых нагрузок более вероятно не повышение, а снижение секреции тестостерона, а также иммунитета, возможны и перетренированность, травмы и уменьшение имеющейся мышечной массы. Настоящая силовая тренировка (см. «Словарик терминов и определений») является стрессовым катаболическим фактором и не является самодостаточным фактором ни выработки тестостерона, ни роста мышц – она «работает» только в сочетании с адекватным восстановлением после неё, которое практически невозможно на дефиците калорий, а при отсутствии должного восстановления приводит к противоположным эффектам (дополнительно см. «Почему силовые тренировки не для похудения», «Стрессовые факторы роста мышц» и другие статьи по теме роста мышц, похудения и «сушки»).
<< 1 2 3 4 >>
На страницу:
3 из 4