Краткие ответы на большие вопросы
Стивен Уильям Хокинг
Большая наука
Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.
Стивен Хокинг
Краткие ответы на большие вопросы
НАУЧНЫЕ БЕСТСЕЛЛЕРЫ
Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность
В этой книге рассказывается история невероятной дружбы между двумя великими физиками, изменившими понятия времени и истории, Ричардом Фейнманом и Джоном Уилером. Несмотря на различия этих двух личностей, их дружба выдержала испытания временем и способствовала чрезвычайно успешному сотрудничеству, приведшему в итоге к полному переосмыслению природы времени и реальности.
О чем думают растения
Что чувствуют растения, и есть ли у них интеллект? Способны ли они общаться между собой и предугадывать будущее? Как новейшие научные открытия в области растительной нейробиологии повлияют на наше представление о сознании? Растения – сложные живые существа, способные к восприятию, борьбе, коммуникации, запоминанию, обучению и социальной жизни. Книга профессора флорентийского университета нейробиолога Стефано Манкузо доказывает, что растения способны на большее, чем мы можем себе представить, а после прочтения вы уже не будете относиться к ним как прежде.
Рождение машин. Неизвестная история кибернетики
Томас Рид расскажет вам поражающую воображение историю кибернетики, отличающуюся от всего того, что вы о ней когда-либо слышали. Он собрал малоизвестные факты, свидетельства совсем не очевидных очевидцев – хиппи, военных, анархистов, шпионов, – принимавших непосредственное участие в процессах, протекавших на фоне «борбы за кибернетическое будущее человечества». Вы узнаете, что в действительности означает приставка «кибер», как появилась наука кибернетика, при чем тут военные и что ждет наш мир в самом ближайшем будущем.
Генетика на завтрак. Научные лайфхаки для повседневной жизни
Австрийский молекулярный биолог и генетик Мартин Модер создал сборник советов для повседневной жизни, эффективность которых научно доказана. Эта книга научит правильно флиртовать, подскажет способ эффективного избавления от лени и прокрастинации, а также расскажет о самых интересных экспериментах по поиску источника вечной молодости. Читайте обо всех необычных (но очень действенных!) лайфхаках, которыми пользуются сами ученые.
От издателя
У Стивена Хокинга постоянно спрашивали мнение по поводу «главных вопросов» современности, которые интересовали ученых, технологических предпринимателей, крупных бизнесменов, политиков и широкую общественность. Стивен собрал огромный архив из своих ответов, которые в разное время принимали форму выступлений, интервью и эссе.
Эта книга создана на основе его архива и все еще не была закончена в момент его смерти. Ее завершили совместно коллеги Стивена, члены его семьи и фонд Stephen Hawking Estate.
Процент от авторских отчислений с продаж книги пойдет на благотворительные цели.
Предисловие
Эдди Редмэйн
Когда я впервые встретил Стивена Хокинга, меня поразила его невероятная сила и одновременно уязвимость. Я уже был знаком с особенностями сосредоточенного взгляда и неподвижного тела Стивена, потому что готовился к съемкам – незадолго до этого меня пригласили на главную роль в фильме «Вселенная Стивена Хокинга» (The Theory of Everything) и я несколько месяцев посвятил изучению его научных работ и исследованию его заболевания, пытаясь понять, как достоверно передать развитие бокового амиотрофического склероза.
Тем не менее при первой личной встрече со Стивеном – иконой, феноменально талантливым ученым, который мог общаться только посредством синтезированного компьютером голоса и выразительных бровей, – я был поражен. Я, как правило, нервничаю в тишине и слишком много говорю. Он же прекрасно понимал силу молчания, силу чувства, что за тобой пристально наблюдают. Растерявшись, я заговорил о том, что наши дни рождения почти совпадают и у нас один знак зодиака. Через пару минут Стивен сказал: «Я астроном, а не астролог». Он также настоял, чтобы я называл его Стивеном и перестал обращаться к нему как к «профессору». Меня предупреждали…
Мне невероятно повезло воплотить Стивена на экране. Эта роль очаровала меня дуализмом внешнего триумфа в науке и внутренней борьбы с боковым амиотрофическим склерозом, который развился у Хокинга после двадцати лет. Его жизнь была сложной, богатой, уникальной историей нечеловеческих усилий, любящей семьи, великих научных достижений и полного пренебрежения сложившимися обстоятельствами. Мы хотели показать в фильме вдохновение и в то же время – мужество и самопожертвование, которые демонстрировали по жизни Стивен и все, кто его окружал.
Не менее важным было представить Стивена как настоящего шоумена. В своем съемочном трейлере я повесил три плаката, в которых черпал вдохновение. На одном был Эйнштейн с высунутым языком, потому что его игривый ум был очень близок Хокингу. На другом – джокер из карточной колоды, кукловод, потому что мне казалось, что Стивен всегда держал людей в своих руках. И на третьем – актер Джеймс Дин; у него я пытался перенять блеск и остроумие.
Изображая живого человека, испытываешь огромное давление, потому что должен считаться с его мнением по поводу твоей игры. В случае со Стивеном нужно было учитывать еще и мнение его семьи. Они были очень добры ко мне во время подготовки к съемкам. Перед первым показом фильма Стивен сказал мне: «Я скажу, что думаю. Хорошо. Или не совсем». Я спросил: если будет «не совсем», то, может, он просто скажет «не совсем» и избавит меня от деталей? Но после просмотра Стивен великодушно заявил, что фильм ему понравился и даже тронул. Хотя более широко известной стала другая его фраза: на его взгляд, в картине должно быть больше физики, чем лирики. И ведь не поспоришь.
После съемок «Вселенной Стивена Хокинга» я продолжал общаться с семьей Хокингов. Меня глубоко тронуло предложение сказать несколько слов на похоронах Стивена. Это был невероятно грустный и при этом прекрасный день, полный любви, веселых воспоминаний и рассуждений об этом самом мужественном из людей, который опередил весь мир в науке и в борьбе за признание прав инвалидов иметь адекватные возможности для благополучной жизни.
Мы потеряли поистине блестящий ум, поразительного ученого и самого веселого человека из всех, с кем я имел счастье быть знакомым. Но, как говорят в семье Стивена после его смерти, его труды и наследие продолжают жить. И я с грустью, но и с большой радостью представляю вам это собрание размышлений Стивена на разнообразные увлекательные темы. Надеюсь, вы получите от них удовольствие, и надеюсь, что и сам Стивен, как сказал Барак Обама, веселится по полной там, среди звезд.
С любовью,
Эдди
Введение
Профессор Кип Стивен Торн
Впервые я встретил Стивена Хокинга в июле 1965 года в Лондоне, на конференции по общей теории относительности и гравитации. Стивен в то время готовил докторскую диссертацию в Кембриджском университете; я только что защитил свою в Принстоне. В кулуарах конференции прошел слух, будто Стивен нашел неопровержимое доказательство того, что наша Вселенная должна была родиться в какой-то определенный промежуток времени в прошлом. Она не может быть бесконечно старой.
Вместе с сотней людей я втиснулся в аудиторию, рассчитанную на сорок человек, чтобы послушать Стивена. Он вошел с палочкой, речь его была слегка невнятна, но в остальном он демонстрировал весьма незначительные признаки бокового амиотрофического склероза, который ему диагностировали за два года до этого. Его ум оставался поразительно ясным. Его продуманные доказательства опирались на уравнения общей теории относительности Эйнштейна, на астрономические наблюдения, согласно которым наша Вселенная расширяется, и на несколько простых предположений, которые были очень похожи на правду. Он также использовал некоторые математические методы, недавно разработанные Роджером Пенроузом. Все это было оригинально, мощно и убедительно, и в конце Стивен подошел к выводу: наша Вселенная должна была возникнуть в сингулярном состоянии, примерно десять миллиардов лет назад. (В последующее десятилетие Стивен и Роджер, объединив усилия, усовершенствуют доказательства сингулярного начала времени, а также того, что в центре черной дыры находится сингулярность, где времени не существует.)
Выступление Стивена в 1965 году произвело на меня глубочайшее впечатление. Не только благодаря его аргументам и выводам, но и, что более важно, его прозорливости и креативности. После лекции я нашел его, и мы около часа проговорили с глазу на глаз. Это стало началом дружбы, которая продлилась всю жизнь; дружбы, основанной не только на общих научных интересах, но и на удивительном единодушии, необъяснимой способности понимать друг друга с полуслова. Вскоре мы стали проводить все больше времени вместе, разговаривая о жизни, о наших близких, даже о смерти чаще, чем о науке, хотя научные интересы все равно оставались главным связующим звеном между нами.
В сентябре 1973 года я взял Стивена и его жену Джейн с собой в Москву. Несмотря на разгар холодной войны, я каждый год, начиная с 1968-го, проводил в Москве по месяцу, а то и дольше, сотрудничая с группой ученых, которую возглавлял Яков Борисович Зельдович. Зельдович был выдающимся астрофизиком и одним из отцов советской водородной бомбы. Ему было запрещено выезжать в Западную Европу или Америку из-за закона о неразглашении военной тайны. Он мечтал пообщаться со Стивеном, но не мог поехать к нему, поэтому Стивен приехал сам.
В Москве Стивен покорил Зельдовича и других ученых своими теориями; в свою очередь Стивен кое-что почерпнул у Зельдовича. Больше всего мне запомнился день, который мы провели с Зельдовичем и его аспирантом Алексеем Старобинским в номере Стивена в гостинице «Россия». Зельдович в общих чертах рассказывал об их поразительных открытиях, а Старобинский объяснял их с точки зрения математики.
Для вращения черной дыры необходима энергия. Нам это уже было известно. Черная дыра, как они объясняли, может рождать частицы, и эти частицы разлетаются, унося с собой энергию вращения. Это было ново и удивительно – но не сильно удивительно. Если объект обладает энергией движения, природа естественным образом находит способ извлечь ее. Мы уже знали другие способы извлечения вращательной энергии черных дыр; это был просто новый, хотя и неожиданный способ.
Самая большая ценность таких бесед в том, что они дают толчок новому направлению мыслей. Так произошло и со Стивеном. Он несколько месяцев размышлял над открытием Зельдовича – Старобинского, рассматривая его с разных сторон, пока в один прекрасный день его не озарила поистине гениальная мысль: после того как черная дыра перестает вращаться, она продолжает испускать частицы. Она может излучать, словно она горячая, как Солнце, хотя на самом деле не очень горячая, а скорее умеренно теплая. Чем тяжелее дыра, тем ниже ее температура. Дыра массой с Солнце обладает температурой в 0,00000006 К, или в 0,06 миллионных градуса выше абсолютного нуля. Формула для расчета этой температуры теперь выгравирована на надгробии Стивена в Вестминстерском аббатстве в Лондоне, где его прах покоится между могилами Исаака Ньютона и Чарльза Дарвина[1 -
. – Прим. ред.].
Эта «температура Хокинга» черной дыры и ее «излучение Хокинга»[2 - Излучение Хокинга – излучение черной дырой различных элементарных частиц. – Прим. ред.] (как их стали называть позже) – поистине радикальные открытия; возможно, самые радикальные в теоретической физике второй половины ХХ века. Мы увидели глубокую связь между общей теорией относительности (черные дыры), термодинамикой (физика тепла) и квантовой физикой (создание частиц там, где их не существовало). Например, это навело Стивена на мысль, что черная дыра обладает энтропией, а это означает, что где-то внутри или вокруг черной дыры существует огромная хаотичность. Он пришел к выводу, что количество энтропии (логарифм степени хаотичности дыры) пропорционально площади поверхности дыры. Формула энтропии[3 -
или
. – Прим. науч. ред.] выгравирована на памятнике Стивену перед колледжем Гонвиль и Киз в Кембридже, где он работал.
Последние сорок пять лет Стивен и сотни других физиков стремились понять истинную природу хаотичности черной дыры. Это вопрос, который порождает новые мысли об объединении квантовой теории с общей теорией относительности, а если точнее, о плохо еще понимаемых законах квантовой теории гравитации.
Осенью 1974 года Стивен перевез своих аспирантов и семью (жену Джейн и детей – Роберта и Люси) в Пасадену, Калифорния, чтобы на год погрузиться в интеллектуальную жизнь моего университета – Калифорнийского технологического (Калтех) – и временно присоединиться к моей исследовательской группе. Это был славный год, который потом стали называть «золотым веком исследований черных дыр».
В течение этого года Стивен со своими и некоторыми из моих учеников старался глубже понять природу черных дыр. До некоторой степени я и сам занимался этой проблемой. Но присутствие Стивена и его ведущая роль в нашей объединенной исследовательской группе дали мне свободу заняться новым направлением (о чем я мечтал уже несколько лет) – гравитационными волнами.
Существует лишь два типа волн, которые способны перемещаться во Вселенной и доносить до нас информацию из ее глубин: электромагнитные (в том числе свет, рентгеновские лучи, гамма-лучи, микроволны, радиоволны) и гравитационные волны.
Электромагнитные волны – это пульсирующие электрические и магнитные силы, которые перемещаются со скоростью света. Встречаясь с заряженными частицами, такими как как электроны в антенне радиоприемников и телевизоров, они приводят эти частицы в движение, тем самым передавая содержащуюся в них информацию. Эта информация может быть усилена и направлена в динамик или на телевизионный экран, становясь доступной для человеческого восприятия.
Гравитационные волны, согласно Эйнштейну, – это пульсация искривленного пространства: пульсирующее растяжение и сжатие пространства. В 1972 году Райнер (Рай) Вайсс из Массачусетского технологического института изобрел детектор гравитационных волн. В этом устройстве, представляющем собой Г-образную вакуумную трубку, на концах и в месте изгиба располагались зеркала, которые в одном отрезке расходились благодаря расширению пространства, а в другом сходились благодаря сжатию пространства. Райнер предложил использовать лазерный луч для измерения характера пульсаций при расхождении и сжатии. Лазерный луч может извлечь информацию из гравитационных волн, а сигнал затем может быть усилен и передан в компьютер, чтобы стать доступным человеческому пониманию.
В основе изучения Вселенной с помощью электромагнитных телескопов стоит изобретение Галилеем небольшого оптического телескопа. Направив его на Юпитер, Галилей обнаружил четыре крупнейших спутника этой планеты. За четыре сотни лет, прошедших с тех пор, астрономия полностью преобразила наши представления о Вселенной.
В 1972 году я со своими учениками начал размышлять, о том, что можно узнать о Вселенной с помощью гравитационных волн. Мы стали разрабатывать идеи для гравитационно-волновой астрономии. Поскольку гравитационные волны – это форма искривления пространства, наиболее интенсивно их испускают объекты, которые полностью или частично состоят из искаженного пространства-времени, в частности именно черные дыры. Мы пришли к выводу, что гравитационные волны – идеальный инструмент для изучения и проверки гипотез Стивена о природе черных дыр.