Физико-химические основы синтеза и применения тонкослойных неорганических сорбентов
Николай Дмитриевич Бетенеков
Монография предназначена в помощь студентам и аспирантам вузов России при освоении ими теоретических курсов "Радиохимия" и "Технология редких, рассеянных и радиоактивных элементов" .
Министерство образования и науки Российской Федерации
Уральский Федеральный университет имени
Первого Президента России Б. Н. Ельцина
Редактор академик РАН Б. Ф. Мясоедов
Рекомендовано методическим советом УрФУ для студентов, обучающихся по направлению подготовки 250900 – Химимческая технология материалов современной энергетики
Введение
На современном этапе интенсивного развития металлургической промышленности, ядерной и тепловой энергетики, использования мощных транспортных средств с ядерными энергетическими установками, непрекращающихся испытаний ядерного оружия, трагических ядерных инцидентов в Кыштыме и Чернобыле важное место начинают занимать проблемы, связанные с присутствием и поведением в окружающей среде техногенно рассеянных радиоактивных вещеществ.
Особая роль в решении указанных проблем принадлежит сорбционной технологии, в частности, с применением неорганических сорбентов. Последние, по сравнению с органическими ионитами, обладают более высокой селективностью, химической, радиационной и термической устойчивостью. В пятидесятые годы стала очевидна перспективность использования неорганических сорбентов, особенно в гранулированной форме, в радиохимической технологии для переработки высокоактивного облученного ядерного горючего [1], дезактивации сточных вод [2], изготовления источников ионизирующего излучения с высокой удельной активностью [3, с.84], очистки контурных вод ядерных реакторов [4, с.280], концентрирования урана из природных, в частности, морских вод [5], в радиохимическом анализе и аналитической химии [6], в технологии особо чистых неорганических веществ [7] и гидрометаллургии [8], в медицине и биологии [9]. В подавляющем большинстве перечисленных технологических и аналитических задач необходимо концентрировать малые количества радиоактивных или стабильных примесей (микрокомпонентов) из больших объемов водных растворов с разнообразным солевым составом. Некоторые специальные задачи радиохимического анализа производственных растворов и природных вод, в частности, на содержание короткоживущих радионуклидов, включают концентрирование как предварительную стадию и требуют экспрессного проведения этой операции. Неорганические сорбенты в гранулированной форме, полученные известными способами (сушка, замораживание с последующим размораживанием, прессование, гранулирование окатыванием и прессформованием, импрегнирование и осаждение в пористых материалах, получение сферических частиц методом падающей капли [10, с.31]), не удовлетворяют требованиям экспрессного концентрирования микрокомпонентов.
Основное отличие неорганических сорбентов от органических ионообменников состоит в замедленности гелевой диффузии сорбируемых ионов. Причиной диффузионных затруднений является жесткость скелета неорганических полимерных и кристаллических фаз, отсутствие набухания, незначительный размер пор. Поэтому сорбционная способность неорганических сорбентов существенно зависит от степени развития их поверхности, что находит отражение в связи коэффициента закона Генри (k
) с величиной удельной поверхности (Sуд) [11, с.115]:
k
= C
/C
= М
V
/?V
М
= М
V
/М
m h S
=k
hS
, (1)
здесь C
– концентрация сорбированного микрокомпонента в твердой фазе (моль/см
); C
– концентрация микрокомпонента в растворе (моль/см
); М
и М
– абсолютные количества микрокомпонента соответственно в твердой и жидкой фазах (число атомов); V
= ?V
= (hS?/m) m/? = hS
m, где V
и V
– общий объем сорбента и объем, доступный для сорбции (см
); m и m'=hS? – общая масса сорбента и масса сорбента, доступная для сорбции (г); h – толщина сорбционного слоя (см); S – поверхность сорбционного слоя (см
); ? -плотность сорбента (г/см
); S
=S/m – удельная поверхность сорбента (см
/г); k
= М
V
/М
m – коэффициент распределения, определяемый в опыте (см
/г). Отсюда
k
=k