Оценить:
 Рейтинг: 0

Гемопоэтическая стволовая клетка в патогенезе болезней цивилизации, ее диагностические возможности и биотерапевтический потенциал

Жанр
Год написания книги
2023
<< 1 2 3 4 5 6 7 8 ... 12 >>
На страницу:
4 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля

в организме человека являются самыми универсальными регуляторами гомеостаза, т.к. имеют самый большой период жизненного клеточного цикла (ок. 360 дней) (Пальцев и др., 2009). В свете современных концепций системного подхода к управлению очевидно, что в любом биомолекулярном процессе в организме человека и животных управляющей системой является самая медленная фаза (Неймарк, 1985). С учетом данного факта логично предположить, что CD34

, CD45

, HLA-DR

, CD38

ГСК обладают доминирующими управляющими свойствами среди всех клеточных систем организма и их регуляторные функции являются системообразующими (Брюховецкий А. С., 2010) для всех нормальных клеток организма человека. Также наиболее ранние ГСК, возможно, под влиянием чрезвычайных стимулов способны трансформироваться как в НСК, так и в МСК, что с позиций теории клеточного замещения является крайне важным для реставрации поврежденных тканей.

Функцию обновления и восстановления тканей in vivo выполняют преимущественно тканеспецифические СК, которые представляют собой пул запасных недифференцированных предшественников клеток различных типов (Тепляшин, 2005). Выделены и иммунофенотипически охарактеризованы различные типы тканеспецифических СК взрослого организма – гемопоэтические (CD34

, CD45

) СК (ГСК) (предшественники всех клеток крови), нейрональные (CD133

, СD133

) СК (предшественники клеток нервной ткани) (НСК), мезенхимальные сторомальные (CD10

, CD13

, CD44

, CD90

(Thy-1), CD105

, CD34

, CD45

и CD117

) СК (МССК – клетки, способные дифференцироваться в клетки тканей мезенхимального происхождения), а также СК других зародышевых листков.

Самым первым и самым эффективным опытом терапии с использованием СК, позволившим полностью излечить пациентов от рака крови еще в 60-х гг. прошлого века, был опыт применения препарата ГСК при гемобластозах. Путем трансплантации ГСК, полученных из костного мозга донора, удалось заместить все клетки кроветворения (гемопоэза) реципиента и полностью вылечить больного, страдающего острым миелолейкозом (Blood Stem Cell Transplantation, 1998). Сегодня стало очевидно, что ГСК, кроме формирования и восстановления кроветворения, имеют важнейшую регуляторную и системообразующую функцию в организме. В связи с этим считается, что применение биомедицинских клеточных продуктов (БМКП), изготовленных на основе ГСК, является наиболее перспективным направлением в современной медицине (Тупицын и др., 2014; отчет DARPA за 2011). Уже более 100 тыс. пациентов по всему миру получили лицензированный американский препарат «Гемакорд», содержащий ГСК пуповинной крови.

Взрослые ГСК CD34

, CD45

, HLA-DR

, CD38

обладают уникальной способностью направленного трансфера в зону повреждения тканей органа, мигрируя на градиент концентрации воспаления (патотропизм, или хоуминг, ГСК) (Брюховецкий А. С., 2013; Баклаушев, 2015). ГСК, попадая в головной и спинной мозг, являются мощными индукторами синапсогенеза в нервной ткани или участвуют в формировании новых межклеточных контактов в тканях солидных органов (Брюховецкий А. С., 2010, 2013).

Известно, что при пересадке ГСК в различные органы (почки, мозг, печень и т.д.) не наблюдается их прямой дифференцировки в специализированные клетки (кардиомиоциты, миоциты или клетки кожи) этих органов; так трансплантация клеток-предшественников гемопоэза в сердце не приводила к формированию миоцитов. Или их пересадка в слизистую кишечника не восстанавливала секреторную функцию органа. Локальная дифференцировка in situ, как правило, контролировалась «сигналами» микроокружения. Хорошо известна потенциальная возможность трансдифференцировки ГСК в НСК in vitro под воздействием определенных т.н. пертурбогенов (ретиноевая кислота) (Kuroda et al., 2010). Многолетние клинические наблюдения также подтвердили отсутствие аномалий дифференцировки СК в трансплантате. В то же время ГСК обладают функцией целенаправленной миграции к зонам повреждения (Чехонин и др., 2005; Баклаушев и др., 2014). В 2003 г. J. Praice в Англии запатентовал технологию трансплантации ГСК для интрацеребрального введения при лечении поврежденного мозга, которая также рекомендована авторами для использования в терапии болезни Альцгеймера, болезни Паркинсона и болезни Крейтцфельдта – Якоба. Аналогичные свойства целенаправленной миграции к повреждению, хоумингу, патотропизму характерны и другим тканеспецифическим СК и их предшественникам, таким как МССК и НСК (Kaplan, 2006; Snyder et al., 2006).

В настоящее время доказано, что трансплантированные клетки лейкоконцентрата мобилизованных мононуклеаров формировали кластеры ГСК и гемопоэтических клеток-предшественников (ГПК) в ткани поврежденного органа (Ono et al., 1999). В нашей работе было показано, что мультиклеточный кластер мобилизованных МНК, ГСК и ГКП человека после введения в организм (кровь, ликвор, ткань органа) крысы вел себя как системоообразующий по отношению к входящим в него клеткам, и они организованно мигрировали преимущественно (78%) в пострадавший орган, а затем и в зону максимального повреждения и равномерно распределялись в этой зоне (Брюховецкий А. С., 2013). E. Snyder (2005) описал подобный эффект миграции НСК при введении в ткань мозга из правого (интактного) полушария в левое полушарие, где была смоделирована глиальная опухоль мозга мыши за 36 дней. В нашем исследовании повторение данного эксперимента на крысах с глиомой С6 введение лейкоконцентрата мобилизованных мононуклеаров, содержащих ГСК и МСК, занимало 14 дней. Этот феномен может быть ключевым не только в решении вопроса регенерации органов и тканей после повреждения, но и в разработке и создании клеточных препаратов на основе ГСК. Именно клеточный кластер трансплантированных кроветворных клеток имеет важнейшее значение для трансфера этих клеток к месту повреждения, а также целенаправленного распределения их в зоне повреждения патологического органа и адгезии СК к пострадавшим клеткам, оказанию оптимального саногенетического регуляторного и реставрационного воздействия СК и их предшественников на поврежденные клетки.

По-видимому, роль клеток микроокружения ГСК в восстановлении нарушенного гемопоэза является определяющей для уровня функциональной активности ГСК как в нише костного мозга, так и для ГСК, трансплантируемых в кровь или ткань, а также переливаемых в ликвор в составе кластера костномозговых клеток. Возможно, что для того чтобы получить требуемый функциональный (регуляторный, противоопухолевый, нейрореставрационный и т.д.) эффект ГСК в организме человека, целесообразно использовать их именно в составе лейконцентрата, содержащего весь спектр клеток микроокружения костномозговой ниши. Интересно, что изолированное введение клеток лейкоконцентрата мононуклеаров (МНК), освобожденных от ГСК (СD34

, CD45

, CD45

), не обеспечивает требуемых нейрореставрационных эффектов в эксперименте у крыс (Брюховецкий А. С. и др., 2015), как и изолированое введение очищенных ГСК не дает нужных эффектов нейрорегенерации (Брюховецкий, Хотимченко, 2018).

Как было отмечено выше, мобилизованные МНК костного мозга являются важной частью костномозговой ниши, в которой располагаются ГСК и МСК, и клетки микроокружения даже в периферической крови сопровождают ГСК и имеют важнейшее значение в поддержании активности и функциональности различных типов стволовых клеток. По-видимому, клетки естественного микроокружения обеспечивают активность и системную функциональность ГСК и МСК. В этом ключе ГСК и МССК целесообразно использовать совместно с клетками их ближайшего микроокружения (Брюховецкий А. С., 2013).

ГСК, имплантированные в полушарие, противоположное опухолевому или другому патологическому (воспалительному, ишемическому, кровоизлиянию и т.д.) очагу, так же как и введенные внутривенно, демонстрируют общее свойство ГСК – целенаправленно мигрировать к очагу патологии и восстанавливать нарушенный внутритканевой гомеостаз (Брюховецкий А. С., 2011; Брюховецкий И. С. и др., 2015; Брюховецкий, Хотимченко, 2018). Данное свойство ГСК используется для суперселективной доставки иммунолипосомальных конструкций, содержащих противоопухолевые химиопрепараты или другие молекулы цитотоксического или цитостатического действия. Кроме того, возможна суперселективная доставка рентгеноконтрастных веществ, радиоизотопных препаратов, сигнальных белков и наноконструкций, повышающих чувствительность опухолевых клеток к традиционным способам терапии (Брюховецкий А. С., 2011). Перспективной представляется стратегия использования ГСК как транспортной системы адресной доставки биологической информации для локальной модуляции процессов апоптоза, что требует продолжения исследований в данном направлении (Брюховецкий И. С. и др., 2014, 2016). Подобные свойства СК, характерные для гемопоэтических стволовых клеток, описаны и для МССК (Сaplan, 2013, 2014; Choop et al., 2015, 2016).

Начиная с последнего триместра внутриутробного развития на протяжении всей жизни человека основным гемопоэтическим органом является костный мозг – именно там сосредоточено абсолютное большинство стволовых кроветворных клеток (СКК). Содержание стволовых клеток в костном мозге у здоровых индивидуумов колеблется в пределах 0,5—4,0% среди мононуклеаров (Andrews et al., 1986; Civin et al., 1984). И этот небольшой пул стволовых кроветворных клеток обеспечивает человеку ежесуточную потребность в 400 млрд клеток крови.

Концентрация стволовых клеток в периферической крови в состоянии стабильного кроветворения (у практически здорового человека) мала – менее 0,01%, а истинно стволовые клетки еще более редкая популяция – 1:100 000 (Чертков, Дризе, 1998), что делает затруднительным изучение их свойств и особенностей поведения даже самыми чувствительными методами.

Именно поэтому на ранних этапах изучения ГСК основным источником их получения был костный мозг, т.к. долго считалось, что клетки-предшественники отсутствуют в периферической крови в нормальных условиях. Однако по мере совершенствования методик, позволяющих обнаружить очень незначительные количества клеток-предшественников гемопоэза (КПГ), был установлен факт периодического поступления гемопоэтических предшественников в периферическое русло под влиянием ряда факторов (Elias et al., 1992; Sprangrud, 1994). И так появилась уникальная возможность мобилизации периферических стволовых клеток крови (ПСК) – повышения количества КПГ в периферической крови при стимуляции гемопоэза ростовыми клеточными факторами. В это же время была представлена и первая характеристика клеток класса гемопоэтических предшественников (Ogawa, 1993).

Открытие феномена мобилизации СКК сделало возможным использование стволовых клеток крови для восстановления кроветворения после введения высоких доз цитостатиков и открыло новую эру в лечении когорты пациентов, требующих значительной эскалации доз химиопрепаратов (Heguet, 2015).

Феномен мобилизации стволовых кроветворных клеток заключается в их способности покидать костный мозг и выходить в кровеносное русло под влиянием повреждающих воздействий (например, цитостатиков), цитокинов, ростовых или колониестимулирующих факторов (Link et al., 2000).

При мобилизации стволовые клетки крови сохраняют свои главные свойства – значительный пролиферативный потенциал и способность к дифференцировке в зрелые клетки крови (Chtinantakul et al., 2012; Eaves et al., 2015; Mohle еt al., 1999; Zanjani et al., 1999).

В процессе мобилизации концентрация СКК возрастает до уровней, достаточных для трансплантации. Детальное изучение мембранных маркеров этих клеток проводится иммунологическими методами, в частности проточной цитометрией, с использованием многопараметровой иммунофлуоресценции и идентификации СКК на основании экспрессии антигена CD34.

Постепенно методы мобилизации периферических стволовых клеток крови совершенствовались и была показана возможность сохранения жизнеспособных ГСК в жидком азоте.

До настоящего времени большинство трансплантаций кроветворной ткани – это аутологичные трансплантации мобилизованных периферических СКК, когда больному после введения сверхвысоких доз химиопрепаратов кроветворение восстанавливают его собственными стволовыми кроветворными клетками, заготовленными заранее в период ремиссии основного заболевания (Korbling et al., 2011).

При аутологичной трансплантации у онкологического больного всегда существует риск ретрансплантации болезни, т.е. пересадки вместе со здоровыми кроветворными клетками клеток опухоли, циркулирующих в крови. Избежать этого возможно при использовании в качестве поддержки кроветворения донорских стволовых клеток.

Кроме того, при трансплантации донорских стволовых клеток при соблюдении определенных условий развивается феномен «трансплантат против болезни», что делает процедуру не просто терапией поддержки, но самостоятельным лечением.

Трансплантационным материалом могут являться как периферическая кровь, так и костный мозг и пуповинная кровь. Преимущества какого-либо источника стволовых кроветворных клеток определяются условиями конкретного лечебного учреждения, поскольку у каждого метода имеются достоинства и недостатки (Azouna et al., 2011; Blume et al., 2000).

Таким образом, развилось целое направление терапии онкологических больных, позволяющее использовать сверхвысокие дозы химиопрепаратов в качестве консолидирующей терапии, а травмированный этими высокими дозами гемопоэз поддерживать мобилизованными стволовыми клетками крови.

При обобщении знаний, полученных в области изучения гемопоэтических предшественников и всех последующих клеточных типов, были разработаны подробные схемы гемопоэза, которые мы используем и по настоящее время. Не последнюю роль здесь также сыграли российские ученые, и в первую очередь это И. Л. Чертков – выдающийся экспериментальный гематолог, д.м.н., проф., главный научный сотрудник Гематологического научного центра РАМН. Иосиф Львович внес большой вклад в изучение клональности кроветворения. Согласно теории Черткова, стволовые кроветворные клетки (СКК) обладают высоким, но не безграничным пролиферативным потенциалом; они не бессмертны и не могут «самоподдерживаться». СКК закладываются только в эмбриогенезе и расходуются последовательно, образуя короткоживущие, локально расположенные, сменяющие друг друга клеточные клоны, аналогично тому, как это происходит в яичнике. Иосиф Львович изучал оба типа стволовых клеток – и мезенхимальные, и кроветворные. В своих работах он продемонстрировал, что МССК являются родоначальниками кроветворного микроокружения и отличаются от СКК по радиочувствительности.

Считается, что при внутривенной трансплантации костного мозга в виде клеточной взвеси МССК теряются – они неспособны проникнуть в микрообласты, где происходит их функционирование, даже в случае если костномозговая взвесь вводится внутрь кости. МССК способны к переносу кроветворного микроокружения только при трансплантации под кожу или капсулу почки без превращения костного мозга в одноклеточную взвесь. В работах Черткова впервые были получены физиологические характеристики МССК, им разработана принципиально отличная от общепринятого мнения теория клональной кинетики СКК. Полученные данные нашли подтверждение в мировой практике. Показано, что при внутривенной трансплантации костного мозга донорские МССК не выживают; выявлены клоны «здоровых» СКК у больных с опухолями лимфоидной и кроветворной системы. Данные о клональности кроветворения подтвердились в исследованиях печального опыта Чернобыльской аварии. С сер. 1970-х гг. И. Л. Чертков вместе с А. Я. Фриденштейном заложили фундамент для экспериментального изучения стволовых клеток костного мозга. В 1984 г. вышла в свет монография Иосифа Львовича «Гемопоэтическая стволовая клетка и ее микроокружение», на которой, подобно труду Е. Уилсона, было воспитано не одно поколение гематологов, и которая до сих пор остается ключевым руководством в онкогематологии. Иосиф Львович был одним из пионеров гибридомной технологии; он основал первую компанию по производству моноклональных антител в СССР. Ряд диагностических препаратов на основе моноклональных антител для определения группы крови, созданных И. Л. Чертковым, широко используется и сейчас (Чертков, Воробьев, 1973; Чертков, Дризе, 1998; Mathe et al., 1972).

Постепенно схемы кроветворения уточнялись и дополнялись с учетом вновь получаемых знаний, однако принципиальная структура их не изменилась до сих пор. Создание структурной схемы гемопоэза облегчило понимание процессов кроветворения как в норме, так и при патологии, и особенно в онкогематологии, что позволило оценивать уровень злокачественной трансформации клеток, соотнося их иммунофенотип с нормальным аналогом и повлияло на разработку принципиально новых схем лечения.

Как уже упомянуто выше, более 60 лет прошло с момента, когда впервые была высказана гипотеза о существовании единой родоначальной гемопоэтической клетки, до получения первых реальных доказательств ее существования. Тогда был разработан и применен в эксперименте метод клонирования кроветворных клеток в селезенке смертельно облученных мышей (Till, McCulloch, 1961). Установлена способность клеток-предшественников гемопоэза образовывать в организме или культуре колонии-клоны, возникающие из одной клонообразующей клетки (Metcalf, Moor, 1971).

Далее, благодаря развитию методов клонирования гемопоэтических клеток-предшественников не только in vivo, но и in vitro, стало возможным глубокое изучение клеток данного отдела гемопоэза, а также была показана неоднородность класса гемопоэтических предшественников. В 70-х гг. были охарактеризованы полипотентные КПГ, способные к самоподдержанию, обеспечивающие стойкое, длительное восстановление гемопоэза. Данные клетки имели высокий потенциал пролиферации и были способны к дифференцировке по всем направлениям гемопоэза (McCulloch, 1970; Lajtha, 1975).
<< 1 2 3 4 5 6 7 8 ... 12 >>
На страницу:
4 из 12