Оценить:
 Рейтинг: 0

Псевдонаука

Год написания книги
2018
Теги
<< 1 2 3 4 5 6 7 8 >>
На страницу:
3 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля
Становится понятно, почему физику называют точной наукой.

5. Механизмы науки. От гипотезы к теории

В науках, называемых эмпирическими или описательными, например в геологии, эмпирические обобщения завершают исследование. В теоретических и экспериментальных науках это только начало. Дальше следует выдвижение гипотезы. Научная гипотеза – это некоторое предположение, объясняющее причины явления или совокупности явлений.

«Эмпирическое обобщение опирается на факты, индуктивным путем собранные, не выходя за их пределы и не заботясь о согласии или несогласии полученного вывода с другими существующими представлениями о природе… При гипотезе принимается во внимание какой-нибудь один или несколько важных признаков явления и на основании только их строится представление о явлении, без внимания к другим его сторонам. Научная гипотеза всегда выходит за пределы фактов, послуживших основой для ее построения».

    В. И. Вернадский.

При выдвижении научной гипотезы одних накопленных опытных данных уже недостаточно. Яблоки и камни падают на землю. Но не все тела ведут себя так же. Например, Луна на Землю не падает. Гений Ньютона заключался в том, что он увидел общее за, казалось бы, разнородными явлениями: падением тел на землю и вращением Луны вокруг Земли. Выдвижение гипотез в науке – это качественный скачок вперед. Это момент чистого творчества.

Выдвинув гипотезу, ученый возвращается на эмпирический уровень для ее проверки. Лучшим доказательством правильности гипотезы будет подтверждение следствий из нее, о которых не было известно до ее выдвижения. Причем крайне желательно проводить новые опыты так, чтобы в первую очередь выяснить границы применимости гипотезы или даже опровергнуть ее в каких-то случаях. Желающий найти подтверждение своим доводам всегда их найдет. Для ученого же важна истина. Проверочные опыты для гипотезы – это как закалка для огнестрельного оружия на заводе-изготовителе. Нужны экстремальные условия, в которых, вероятно, техника никогда применяться не будет: огонь, вода, мороз, пыль. Потому что оружие не должно подвести в самый ответственный момент. Научная гипотеза точно так же должна быть надежной. И должна испытываться на прочность. Жаль, что многие исследователи паранормальных явлений, нетрадиционных методов лечения, астрологии, свидетели НЛО крайне несерьезно относятся к любым заявлениям о паранаучных и псевдонаучных феноменах. Никаких испытаний на прочность ими не проводится, заявления о сверхъестественном сразу же принимаются на веру.

Часто при выдвижении гипотез мы не имеем возможности сразу проверить наши предположения, допустим, если уровень развития техники на текущий момент не позволяет произвести точное наблюдение или эксперимент. Также гипотезы могут выдвигаться для объяснения событий, происходящих на протяжении длительного времени, в том числе произошедших в далеком прошлом, например, это могут быть проблемы, связанные с возникновением жизни на Земле. Прямая опытная проверка здесь вообще невозможна[12 - Возможно, когда-нибудь, когда наши далекие потомки научатся совершать межзвездные перелеты и отправятся к другим звездам, они смогут наблюдать зарождение жизни на других планетах и соберут достаточное количество статистической информации по этому вопросу. Таким образом, мы сможем еще больше прояснить и собственное происхождение.]. Обычно эти трудности обходят, выдвигая перекрестные гипотезы из различных областей науки в поисках взаимного согласия. Возраст Земли, оцениваемый в четыре с половиной миллиарда лет (плюс-минус один процент погрешности), подтверждается астрономическими вычислениями содержания гелия в недрах Солнца, геологическими измерениями тектоники плит и биологическими наблюдениями за ростом коралловых отложений.

В отсутствие эмпирической проверки для объяснения какого-то явления или события могут выдвигаться самые разнообразные гипотезы. В этом случае в рассуждениях часто пользуются методологическим принципом, называемым «бритвой Оккама» или «принципом научной бережливости». Профессор логики Уильям Гамильтон в своих трудах в 1852 году впервые назвал бритвой Оккама известную латинскую фразу «Entia non sunt multiplicanda praeter necessitatem» («Не следует множить сущности без необходимости»). Сам Уильям Оккам, английский монах-францисканец (ок. 1285–1349), писал, «что может быть сделано на основе меньшего числа [предположений], не следует делать, исходя из большего». Суть данного принципа заключается в следующем: если некое явление или событие может быть описано несколькими способами, то из всех возможных объяснений лучше выбрать самое простое, то есть привлекающее наименьшее количество сущностей/факторов. Поясним на примерах из истории науки.

В 1964 году в созвездии Лебедя был открыт сильный источник рентгеновского излучения, названный Лебедь Х-1 (Cygnus X-1). В этой точке на расстоянии примерно в 6070 световых лет[13 - Световой год – расстояние, которое свет может пройти в вакууме за один астрономический земной год. Это расстояние примерно равно девяти с половиной триллионам километров. Межзвездные расстояния, ввиду своей огромности, измеряются в световых годах. Например, расстояние до ближайшей к Солнцу звезды, проксима Центавры, составляет 4,24 световых года.] находится звезда-сверхгигант HDE 226868, но рентгеновское излучение исходит из точки, находящейся рядом с этой звездой. Видимого источника излучения не наблюдалось. Для объяснения этого явления были выдвинуты две гипотезы. Согласно первой, вокруг сверхгиганта вращается маленькое по размеру, но массивное тело (масса порядка 10 масс Солнца). Звездный ветер (различные частицы) сверхгиганта притягивается малым объектом и собирается во вращающийся диск вокруг него (астрономы называют такие диски аккреционными дисками[14 - Подробное описание понятия «аккреция звездного вещества» будет дано в главе 20.]). Внутренние области диска разогреваются до миллионов градусов и генерируют рентгеновское излучение.

Другая гипотеза требовала наличия вокруг сверхгиганта уже двух невидимых объектов: блеклую обычную звезду и вращающуюся нейтронную звезду (пульсар). Эти три тела, расположенные определенным образом, также могли быть источниками зарегистрированного излучения. Удаленность Лебедя Х-1 не позволяла сделать наблюдательную проверку. Хотя обе соперничающие гипотезы приводят нас к одному результату, бритва Оккама делает более привлекательной первую гипотезу, именно из-за ее простоты. В итоге Лебедь Х-1 стал первым зарегистрированным рентгеновским источником – кандидатом в черные дыры и на сегодняшний день является одним из самых хорошо изученных подобных объектов.

В 1974 году Лебедь Х-1 стал предметом шутливого спора двух известнейших физиков-теоретиков – Стивена Хокинга и Кипа Торна. Хокинг ставил на то, что Лебедь Х-1 не является черной дырой и признал свое поражение в 1990 году, после появления новых наблюдательных данных об этой звездной системе. Кип Торн признал наличие черной дыры лишь в 2011 году, после того, как в трех опубликованных статьях завершилось описание Лебедя Х-1.

Другой пример, снова из астрономии, связан с изучением звезды KIC 8462852, находящейся тоже в созвездии Лебедь, на расстоянии 1480 световых лет от Земли. Звезда пока не получила официального названия, но вполне возможно, его получит. Сейчас ее неофициально называют «Звезда Табби» по имени Табеты Бояджян, автора статьи, впервые описавшей ее. В сентябре 2015 года астрономы опубликовали результаты исследований изменений светимости KIC 8462852. Оказалось, что эта звезда за разные периоды времени меняет свою светимость необычным образом, с падением яркости на 22 %. Ранее подобных объектов не наблюдалось. Для объяснения этого эффекта привлекалось множество гипотез: неисправности орбитального телескопа «Кеплер», наблюдавшего звезду, помехи при передаче информации; кометные потоки, периодически заслоняющие KIC 8462852 от нас. На текущий момент все имеющиеся стандартные гипотезы не являются исчерпывающими, так как не могут полностью объяснить все особенности наблюдательных данных. В итоге некоторые из авторов исследования предположили еще один сценарий, нестандартный. По их мнению, аномальное изменение светимости звезды может быть связано со строительством на орбите звезды громадного искусственного объекта. О существовании подобных гипотетических астроинженерных конструкций, создаваемых высокоразвитой цивилизацией, впервые заговорил физик Фримен Дайсон еще в 1960-х годах. Поиск гипотетических «сфер Дайсона» является одной из самых известных идей по поиску высокоразвитых внеземных цивилизаций. Заявления астрономов инициировали более серьезное изучение данной проблемы. Планируется наблюдение звезды с помощью других телескопов, в разных диапазонах принимаемого излучения. По самым последним данным (на 19 мая 2017 года) звезда «Табби» снова начала тускнеть.

Как заметил Джейсон Райт, астроном Университета штата Пенсильвания, «инопланетяне всегда должны быть самой последней гипотезой, которую стоит рассматривать, но это выглядит как то, что вы ожидаете от внеземной цивилизации». Ученые ждут новых наблюдательных данных. Журналисты, как обычно, ничего не ждут и тиражируют заголовки в стиле «Физики: Звезда KIC 8462852 является источником энергии для инопланетян». Ученым нужно быть не только аккуратными в своих гипотезах, но и осторожными в пресс-релизах.

Принцип Оккама не отрицает возможные сложные объяснения явлений. Он скорее предписывает исследователю в своей работе рассматривать гипотезы по порядку, от самых простых и вероятных до самых сложных и невероятных. Бритва Оккама хорошо работает применительно к теориям заговора. Не отрицая саму возможность различных конспирологических версий, с помощью этого принципа можно указать на их сложность, предложив в качестве альтернативы более простые объяснения. Можно, например, заметить, что, утверждение «спецслужбы США подготовили теракты 11 сентября в Нью-Йорке, совершили их так, как будто это были арабские террористы, и скрыли все это ото всех» является более сложной гипотезой, чем «теракты 11 сентября в Нью-Йорке подготовила террористическая организация».

Подтвержденная гипотеза приобретает статус закона природы. В случае «ньютоновских» яблок наша гипотеза окончательно формулируется в виде закона всемирного тяготения: «Между любой парой тел во Вселенной действуют силы взаимного притяжения, пропорциональные произведению масс этих тел и обратно пропорциональные квадрату расстояния между ними». В современном виде этот закон записывается так:

F = G (m

? m

) / r

Здесь m

и m

– массы обоих тел, r – расстояние между их центрами, G – некая постоянная величина, коэффициент пропорциональности. Ньютон не знал величину гравитационной постоянной G в своем законе, он лишь постулировал зависимость силы от масс тел и расстояния между ними. Константу G удалось оценить только через сто лет, в основном трудами Генри Кавендиша. Но закон тяготения обладал научной строгостью – из него можно было вывести законы движения планет и делать проверяемые астрономические предсказания.

С помощью законов Ньютона английский астроном Эдмонд Галлей совершил переворот в представлениях о кометах, считавшихся до этого случайными странниками, пролетающими сквозь Солнечную систему, и показал, что одна из таких комет наблюдается на небосводе каждые 75–76 лет. Предсказание Галлея сбылось в 1758 году, когда комета снова вернулась (она была названа впоследствии кометой Галлея), что стало первым триумфальным подтверждением справедливости теории тяготения Ньютона. И уже во всю свою мощь физическая теория Ньютона раскрылась при открытии Нептуна – первой в истории планеты, открытой не путем наблюдений, а благодаря точным математическим расчетам. Согласно ставшей крылатой фразе французского физика Франсуа Араго, Нептун стал «планетой, открытой на кончике пера».

Совокупность нескольких законов, относящихся к одной области явлений, а также весь накопленный массив эмпирической информации, рабочие гипотезы, методы и принципы, дополняемые соответствующей терминологией, образуют научную теорию[15 - Фраза, подобная этой: «У меня есть теория о том, кто ворует на кухне варенье», в данном контексте лишена смысла. Правильнее было бы назвать свою догадку «предположением» или «гипотезой».]. Это условно конечная точка развития. Научная теория оказывается очень большим и крепким зданием. Но и она постоянно дополняется, развивается. Появляются новые результаты более точных наблюдений и экспериментов, выявляются погрешности в старых работах, развивается математический аппарат научных теорий (без математики в науке никуда). Научные теории развиваются и углубляются. Эволюционная биология сто лет назад и сегодня – драматически различны. Психология сто лет назад и современные когнитивные науки – также принципиально различаются. Наука не стоит на месте. Наука идет вперед.

Человек, не вовлеченный в этот процесс, может путать понятия «гипотеза», «закон» и «теория». А между ними, как мы видим, есть существенная разница. Решающий эксперимент может опровергнуть выдвинутую гипотезу. Новое изученное явление может ограничить область применимости безукоризненно работавшего ранее закона. Опровергнуть теорию значительно сложнее. Часто в СМИ появляются очередные разоблачители «теорий Эйнштейна», «теорий Дарвина», «теорий Хокинга» и прочее. Многим подобным деятелям, видимо, недоступно для понимания, что все эти теории, хотя и появились благодаря работе выдающихся ученых, но держатся отнюдь не на их непререкаемом авторитете.

«Эволюция – это всего лишь теория», – вещает с амвона священник. Нет, эволюция как явление – это твердо установленный факт. А если вам хочется покритиковать именно «теорию эволюции», в своей современной форме именуемую «синтетической теорией эволюции», – то вас постигнут определенные сложности. Потому что научная теория – это не догадка, не допущение, не предписание одного авторитетного человека, данное другим людям для заучивания, не истина, явившаяся кому-то во сне. Современная научная теория – это громадный комплекс теоретических и эмпирических знаний и методов, накопленных задач и гипотез. Теория в науке – это результат коллективного труда тысяч, десятков тысяч человек, творение, имеющее длительную историю развития. Прежде чем начинать с чем-либо спорить, желательно сначала ознакомиться с оспариваемым объектом. Сотни революционеров каждый день стремятся нанести сокрушительный удар по «закостенелым научным догмам». И каждый раз их постигает неудача. Опровергнуть научную теорию – совсем не тривиальная задача.

6. Механизмы науки. Признаки хорошей научной теории

И вот мы, наконец, создали новую научную теорию. При каком условии нам удастся сместить с пьедестала устаревшие знания, отжившие свой век теории или вывести науку «из тупика»? Чем отличается хорошая научная теория?

Объяснительный потенциал. Хорошая научная теория должна объяснять большее число имеющихся фактов и делать это более точно, чем альтернативные теории. Все произошедшие научные революции до настоящего времени были вызваны поисками ответов на ключевые, необъяснимые в рамках господствовавших представлений явления и противоречивые результаты экспериментов. Развитие новой теории начинается с попытки объяснить и понять подобные необъяснимые явления. Например, общая теория относительности Эйнштейна объясняет явление гравитации точнее и лучше, чем закон тяготения Ньютона, а синтетическая теория эволюции имеет больший объяснительный потенциал, чем классический дарвинизм или предшествующие ему концепции.

Предсказательная сила. Любая научная теория должна не только объяснять известные факты, но и предсказывать[16 - Под словом «предсказание» здесь нужно понимать не часто употребляемый в СМИ термин, по сути обозначающий размытые и не ясные описания будущего астрологами и провидцами. Научное предсказание, как правило, выражается математическим языком в виде строгих количественных значений физических (химических и пр.) величин, часто с указанной степенью точности. Очевидно, подтверждение на опыте подобных точных предсказаний – серьезный аргумент в пользу достоверности соответствующей научной теории или модели.] новые результаты, например, результаты экспериментов, которые можно провести сейчас или, если технические средства не позволяют, в будущем. Чем точнее подтверждается предсказание, тем выше доверие к теории. Например, Альберт Эйнштейн (который, как считают многие сторонники альтернативной физики, был абсолютно не прав) в 1916 году, в своей работе по общей теории относительности, предсказал существование гравитационных волн. И вот, спустя 100 лет, оно подтвердилось: международная коллаборация ученых LIGO Scientific Collaboration заявила об экспериментальном открытии гравитационных волн.

Согласуемость с научными знаниями в смежных (пересекающихся) областях. Многие факты опираются на данные из разных областей науки. Опровержение отдельно взятого факта может повлечь за собой конфликт с другими науками. Если, к примеру, ортодоксальный креационист отвергает датировку костей динозавра сотней миллионов лет, то он будет вынужден отречься не только от идей «коварного Дарвина», но и от геологии с физикой, методами которых данные кости были датированы. Хорошая теория вынуждена считаться с соседними теориями по крайней мере до тех пор, пока никто не доказал их ошибочность.

Практическая значимость. В конечном счете, чаще всего научная теория дает и практический выход, общественную пользу. Благодаря успехам биологии развивается медицина, благодаря успехам физики – техника, благодаря успехам химии – развивается практически все. Можно смеяться над «физиками-шизиками», ловящими свой бозон Хиггса, и сетовать на бесполезность с точки зрения материальной выгоды изучения кварков, глюонов и прочих экзотических фундаментальных частиц. Да, никакой практической пользы от этой ловли пока нет. Но вспомним, что 200 лет назад точно такие же отзывы сыпались и в адрес только что открытого электричества.

Любую паранаучную теорию можно прогнать по этому списку. Возьмем астрологию или экстрасенсорику. Как у них дела обстоят с предсказательной силой? Может ли хотя бы один астролог или экстрасенс предсказать урожайность озимых, или инкубационный период инфекционной болезни, или новую частицу в физике? Нет. Хорошо ли согласуются паранаучные сенсации с имеющимися достоверными данными из разных наук? Плохо. А какие технические изобретения позволяют сделать альтернативные физические теории? Пока никаких.

По мере развития научных теорий, предметом их изучения становятся все более сложные сущности, все менее наглядные и понятные нам явления. Часто основополагающие утверждения теории не так-то и легко проверить либо это сделать вообще напрямую невозможно. Почему же тогда мы считаем данную теорию справедливой? Потому что теория успешно объясняет имеющиеся эмпирические данные, делает успешные и точные предсказания, ну и часто (хотя и не всегда) успешно применяется на практике.

Сейчас ни один здравомыслящий человек не сомневается в том, что атомы существуют и что из них состоит все окружающее нас вещество (да, из-за издержек образования есть люди, которые о существовании атомов могут не знать, но отрицать, узнав этот факт, – крайне неразумно). Развиваться атомная теория вещества начала еще во времена Ньютона, но изображения атомов удалось получить впервые только после изобретения сканирующего микроскопа в первой половине XX века. В чем же была сила атомной теории, почему за нее так ухватились? Дело в том, что, даже не имея возможности наблюдать и «щупать» отдельные атомы, ученые извлекали много пользы из этой теории как для объяснения различных физических явлений, так впоследствии и для развития техники. Вот они, те самые объяснительный потенциал и практическая значимость.

К критериям научности также можно отнести следующие характерные особенности: верифицируемость (принцип верификации), фальсифицируемость (принцип фальсификации), внеморальность и проблемность.

Верифицируемость – это возможность эмпирической проверки. Соответственно, принцип верификации гласит: «Любое научное знание (или претендующее на этот статус) проверяемо на опыте либо сводимо к проверяемому на опыте». Любое утверждение, которым может заниматься наука, в конечном счете должно допускать опытную проверку. Воображение ученого может заглянуть в самые заоблачные дали, и гипотезы им могут выдвигаться самые невероятные. Но непроверяемая гипотеза так и остается гипотезой, несмотря ни на собственную красоту, ни на авторитет ученого, ни на глубокую веру в ее правильность, ни на потребность в решении самых насущных проблем. «Существует теория, что вся наша Вселенная покоится внутри атома, и внутри каждого атома нашего тела – бессчетное количество подобных вселенных». Красиво, черт побери. Только никакой проверке не поддается. Просто красивая мысль, идем дальше.

Казалось бы, что еще нужно, чтобы надежно отделить науку от всякой чепухи. Можно проверить – значит, научно. Нельзя проверить – значит, ненаучно. Проблема здесь кроется в том, что множество ненаучных концепций, претендующих на статус объективного описания окружающего мира, при поверхностном изучении верифицируемы, но не способны к продуктивному описанию мира и собственному саморазвитию.

Здесь начинает играть другая особенность научного знания – фальсифицируемость и соответствующий ей принцип фальсификации. Он гласит: «Теория является научной в том случае, если существует методологическая возможность ее опровержения путем постановки того или иного эксперимента, даже если такой эксперимент еще не был поставлен». То есть для научной концепции должна, хотя бы гипотетически, существовать возможность ее опровержения (фальсифицируемости). Теория, неопровержимая в принципе, не может быть научной.

Поясним сказанное на примере. Допустим, я сообщю вам, что в моем доме на чердаке живет домовой. Данное утверждение может быть с легкостью проверено. Вы забираетесь на чердак и никого не находите. Вы считаете, что разоблачили обманщика, но я тут же дополняю свое утверждение новой информацией: домовой по своему желанию может становиться невидимым (например, если ему не нравится человек, забравшийся на чердак). Теперь данная концепция становится в принципе неопровержимой, но все так же верифицируемой. Вы, как и прежде, можете проверить наличие домового на чердаке, но никаким экспериментом вы не сможете доказать его отсутствие – результат любого эксперимента может трактоваться в мою пользу. Данный шутливый пример можно соотнести с большинством заявлений о паранормальных явлениях, экстрасенсорике, а также с некоторыми заявлениями различных гуманитарных дисциплин (например, некоторыми следствиями из теории психоанализа Фрейда). Именно критерий фальсификации позволяет отделить науку от различных религиозных, оккультных или идеологических идей.

Если адвокат обвиняемого в убийстве будет просить о снисхождении ввиду того, что обвиняемым в момент убийства овладел демон и он не контролировал свои действия, то суд вряд ли примет эту информацию к сведению. Но вот религиозный деятель заявляет, что разрушительное цунами в Юго-Восточной Азии – это кара за грехи людские. И многим людям эта мысль уже не кажется абсурдной, хотя оба эти заявления одинаково неопровержимы, значит, ненаучны.

Практически любая теория заговора является нефальсифицируемой, потому что даже сами конспирологи не ответят на вопрос: «Какой аргумент доказал бы вам, что данный заговор не существует?» Любые контраргументы оцениваются одинаково: «Все устроено так, чтобы мы думали, что заговора нет».

Изолированный от любых внешних источников энергии вечный двигатель нарушил бы закон сохранения энергии. Следовательно, закон сохранения энергии фальсифицируем, осталось только этот двигатель создать. Любое свидетельство о существовании людей в палеозойскую эру (длилась с 540 до 250 миллионов лет назад) опровергнет теорию антропогенеза. Все дружно ищем Атлантиду или Гиперборею. Утверждение «Чума – это инфекционная болезнь, вызываемая бактерией Yersinia pestis (чумная палочка)» проверяемо и фальсифицируемо. Мы можем выделить у пациента бактерии и изучить их под микроскопом. А если бы бактерии не обнаруживались, то инфекционная природа заболевания была бы опровергнута. А утверждение «Чума – это наказание Господнее за неправедный образ жизни» сложно верифицировать, а опровергнуть вообще нельзя. Утверждение «Американцы были на Луне» научно доказано, а «Американцы не были на Луне» – ложно. Но оба этих заявления проверяемы и опровергаемы. Осталось построить космический корабль и слетать на Луну к местам посадки «Аполлонов». Утверждение «Существуют призраки, не регистрируемые научными приборами» или «Шизофрения – это одержимость бестелесными демонами, которых нужно изгонять» – не фальсифицируемы в принципе.

«НЛО – психофизическое явление, которое воздействует, как правило, бесконтактно. С его помощью жертвам, очевидцам, внедряются информация, дезинформация, блокируется память».

    Владимир Ажажа, НЛО. Аргументы уфологии.

Если мы соглашаемся с идеей о том, что любая научная теория – это обобщение и осмысление наблюдательного опыта (эмпирических фактов), то каким образом мы можем развивать нашу теорию в случае ее неопровержимости? Ведь мы не сможем выявить в ней ни одного слабого места, от любых наших критических замечаний теория будет уворачиваться.

У астронома Карла Сагана в гараже жил невидимый дракон, не оставлявший следов, у философа Бертрана Рассела в космосе летал чайник размера столь малого, что его невозможно увидеть ни в один телескоп[17 - Дракон Сагана и Чайник Рассела – две шутливые метафоры, объясняющие необходимость использования критериев верификации и фальсификации в доказательствах.]. Адепты культа Ктулху считают Солнце астральной проекцией Великого Ктулху. Последователи саентологической церкви верят, что их лидер Рон Хаббард после своей смерти покинул свое физическое тело и находится в соседней галактике. Я же считаю, что на чердаке у меня живет домовой, а окружающий мир – всего лишь сон спящего древнего бога. Список подобных заявлений можно продолжать, а вот науку на них не построишь.

Итак, научные утверждения верифицируемы и фальсифицируемы. Другими особенностями науки являются ее внеморальность и проблемность. Наука внеморальна в том смысле, что сами научные открытия нейтральны в этическом и моральном плане. Мы можем с точки зрения морали оценивать деятельность ученых, допустимость тех или иных экспериментов (например, над животными или людьми), ученые должны нести ответственность за возможные последствия своих открытий. Но все это не имеет никакого отношения к добытым научным истинам, насколько сильно они бы ни касались этических проблем и моральных устоев.

Если, к примеру, ученые заявляют, что «сексуальная ориентация, по всей вероятности, определяется не каким-либо единственным фактором, а комбинацией генетических, гормональных и средовых влияний», то при условии доказанности данного утверждения оно становится просто биологическим фактом. Религиозный активист может возражать, утверждая, что нетрадиционные сексуальные ориентации – это исключительно результат рекламы в СМИ или одержимости нечистой силой. Мнения не влияют на достоверность фактов. Спорить с научно добытыми фактами можно только другими фактами, также добытыми с помощью научных методов.

Если ученый, автор известной научной теории, вдруг начинает высказывать какие-нибудь расистские или сексистские лозунги, ввязывается в политические акции, критикует государственную власть или, наоборот, ее открыто поддерживает, или становится приверженцем фашизма, совершает противоправные действия и прочее, то сама научная теория, развитая им, никак от этого не становится хуже.

<< 1 2 3 4 5 6 7 8 >>
На страницу:
3 из 8