Появились первые экологические сводки: руководство к изучению экологии животных Ч. Адамса (1913), книга В. Шелфорда о сообществах наземных животных (1913), С. А. Зернова по гидробиологии (1913) и др.
В 1913–1920 гг. были организованы экологические научные общества, основаны журналы. Экологию начали преподавать в университетах.
Авторитетнейший ученый России начала XX в., ботаник И. П. Бородин, выступая в 1910 г. на XII съезде русских естествоиспытателей и врачей с докладом «Об охране участков растительности, интересных с ботанико-географической точки зрения», страстно призывал своих коллег охранять природу и выполнять тем самым «наш нравственный долг», сравнивая это дело с охраной исторических памятников. Бородин особенно интересовался уникальными природными объектами. Любой памятник природы, неважно – большой или маленький, представляет собой, по его мнению, национальное сокровище. «Это такие же уники, как картины, например, Рафаэля – уничтожить их легко, но воссоздать нет возможности».
Г. А. Кожевников (1917) утверждал, что к числу факторов, усугубляющих разрушительные последствия войны и революции, относятся вопиющая отсталость, бескультурье, отсутствие развитой технологии и какого-либо гражданского долга. Кожевников сформулировал три этапа становления отношения человека к природе. Россия, по его мнению, находится на переходной стадии от первого – первобытного, хищнического этапа ко второму, ориентированному на рост и развитие. Даже при отсутствии войны и социальных потрясений мощные структурные факторы должны были бы препятствовать быстрому переходу к третьему этапу, ориентированному на охрану природы. Кожевников, основываясь на данном утверждении, выступал за рационализацию и модернизацию экономики и ее социальной структуры.
На четвертом этапе развития истории экологии после разносторонних исследований к 30-м гг. XX в. определились основные теоретические представления в области биоценологии: о границах и структуре биоценозов, степени устойчивости, возможности саморегуляции этих систем. Углублялись исследования взаимосвязей организмов, лежащих в основе существования биоценозов.
Большой вклад в фитоценологические исследования внесли в России В. Н. Сукачев, Б. Н. Келлер, В. В. Алехин, А. Г. Раменский, А. П. Шенников, за рубежом – Ф. Клементс в США, К. Раункиер в Дании, Г. Дю Рие в Швеции, И. Браун-Бланк в Швейцарии. Ими были созданы разнообразные системы классификации растительности на основе морфологических (физиологических), эколого-морфологических, динамических и других особенностей сообществ, разработаны представления об экологических индикаторах, изучены структура, продуктивность, динамические связи фитоценозов.
В 30–40-х гг. XX в. появились новые сводки по экологии животных, где излагались теоретические проблемы общей экологии: К. Фридерикса (1930), Ф. Боденгеймера (1935) и др.
В развитие общей экологии значительный вклад внес Д. Н. Кашкаров (1878–1941). Ему принадлежат такие фундаментальные труды, как «Среда и общество», «Жизнь пустыни». Он является автором первого учебника в нашей стране по основам экологии животных (1938). По инициативе Кашкарова регулярно издавался сборник «Вопросы экологии и биоценологии».
В этот же период оформилась новая область экологической науки – популяционная экология. Английский ученый Ч. Элтон в книге «Экология животных» (1927) переключает внимание с отдельного организма на популяцию как единицу, которую следует изучать самостоятельно. На этом уровне выявляются свои особенности экологических адаптаций и регуляций.
На развитие популяционной экологии в нашей стране оказали влияние С. А. Северцов, Е. Н. Синская, И. Г. Серебряков, М. С. Гиляров, Н. П. Наумов, Г. А. Викторова, Т. А. Работнова, А. А. Уранова, С. С. Шварц и др.
Е. Н. Синская (1948) провела исследования по выяснению экологического и географического полиморфизма видов растений. И. Г. Серебряковым была создана новая, более глубокая классификация жизненных форм. С. С. Гиляров (1949) выдвинул предположение, что почва послужила переходной средой в завоевании членистоногими суши.
Исследования С. С. Шварца эволюционной экологии позвоночных животных привели к возникновению палеоэкологии, задачей которой является восстановление картины образа жизни вымерших форм.
В начале 40-х гг. XX в. в экологии возникает новый подход к исследованиям природных экосистем. Г. Гаузе (1934) провозгласил свой знаменитый принцип конкурентного исключения, указав на важность трофических связей, как основного пути для потоков энергии через природные сообщества, что явилось весомым вкладом в появлении концепции экосистемы.
Английский ученый А. Тенсли в 1935 г. в работе «Правильное и неправильное использование концепций и терминов в экологии растений» ввел в экологию термин экологическая система. Основное достижение Тенсли заключается в успешной попытке интегрировать биоценоз с биотопом на уровне новой функциональной единицы – экосистемы.
В 1942 г. В. Н. Сукачев (1880–1967) обосновал представление о биогеоценозе. Здесь нашла отражение идея единства совокупности организмов с абиотическим окружением, о закономерностях, лежащих в основе всего сообщества и окружающей неорганической среды – круговороте вещества и превращениях энергии.
В 1942 г. американский ученый Р. Линдеман изложил основные методы расчета энергетического баланса экологических систем. С этого периода стали принципиально возможными расчеты и прогнозирование предельной продуктивности популяции и биоценозов в конкретных условиях среды. Начались работы по точному определению продуктивности водных сообществ (Г. Г. Винберг, 1936).
Развитие экосистемного анализа привело к возрождению на новой экологической основе учения о биосфере, принадлежащего крупнейшему ученому В. И. Вернадскому, который в своих идеях намного опередил современную ему науку. В его интерпретации биосфера предстала как глобальная экосистема, стабильность и функционирование которой основаны на экологических законах обеспечения баланса вещества и энергии.
В 50–90-е гг. XX в. вопросам экологии посвящены работы видных отечественных и зарубежных исследователей: Р. Дажо («Основы экологии», 1975), Р. Риклефса («Основы общей экологии», 1979), Ю. Одума («Основы экологии», 1975; «Экология», 1986), М. И. Будыко («Глобальная экология», 1977), Г. А. Новикова («Основы общей экологии и охраны природы», 1979), Ф. Рамада («Основы прикладной экологии», 1981), В. Тишлера («Сельскохозяйственная экология», 1971), С. Г. Спурра, Б. В. Барнеса («Лесная экология», 1984), В. А. Радкевича («Экология», 1983, 1997), Ю. А. Израэля («Экология и контроль природной среды», 1984), В. А. Ковды («Биогеохимия почвенного покрова», 1985), Дж. М. Андерсона («Экология и науки об окружающей среде: биосфера, экосистемы, человек», 1985), Г. В. Стадницкого, А. И. Родионова («Экология», 1988,1996), Н. Ф. Реймерса («Природопользование», 1990; «Экология», 1994), Г. Л. Тышкевич («Экология и агрономия», 1991), Н. М. Чернова, А. М. Былова («Экология», 1988), Т. А. Акимовой, В. В. Хаскина («Основы экоразвития», 1994; «Экология», 1998), В. Ф. Протасова, А. В. Молчанова («Экология, здоровье и природопользование в России», 1995), Н. М. Мамедова, И. Т. Суравегиной («Экология», 1996), К. М. Петрова («Общая экология», 1996), А. С. Степановских («Общая экология», 1996, 2000; «Экология», 1997, 2003; «Охрана окружающей среды», 1998, 2000) и др.
Анализируя историю экологии как науки, нельзя не заметить, что развитие экологии задержалось минимум на пять-десять лет по сравнению с такими дисциплинами, как эмбриология и генетика. Причинами отставания экологии были:
• недооценка существования фундаментальных законов, применяемых ко всему живому, таких же, как в физике, математике, других точных науках. Более того, известные нам фундаментальные законы развития материи являются, скорее, частными случаями законов экологии;
• степень развития научных знаний, которая вынуждала ученых к изучению изолированных естественных явлений, как если бы они были независимы и не связаны друг с другом. Французский ученый О. Конт в своих трудах проводил мысль о жестких барьерах между науками. Для некоторых ученых такой подход стал привычным. Он вынуждал рассматривать предметы и явления вне существующих между ними взаимосвязей, тогда как системный подход – основное требование при рассмотрении научных фактов в совокупности. Эти искусственные барьеры рушатся в XX в. с появлением новых отраслей знания, сформировавшихся на основе слияния отдельных наук – физики и химии, химии и биологии;
• отсутствие реальных перспектив ее развития вплоть до 30-х гг. XX в. Казалось, что эта наука в отличие, например, от медицины, не может иметь практического применения и должна ограничиваться чисто научными рамками, носить описательный характер.
Однако в конце XX в. происходит неизбежная «экологизация» науки. Это связано с осознанием огромной роли экологических знаний, с пониманием того, что деятельность человека зачастую не просто наносит вред окружающей среде, но и воздействует на нее отрицательно, изменяя условия жизни людей, угрожает самому существованию человечества.
В настоящее время все большее значение приобретает защита окружающей среды от негативного воздействия человеческой деятельности, восстановление благоприятного для жизни и здоровья человека качества среды обитания, оптимизация взаимоотношений «человек – общество – природа».
3.2. Основные понятия, законы, правила и принципы экологии
Современная экология, как любая другая фундаментальная наука, имеет собственную методологию, ряд основных понятий, терминов, определений, правил, принципов и четких законов.
Биосфера (от греч. bios – жизнь, sphaira – шар) – оболочка планеты, состав, энергетика и организация которой обусловливаются взаимодействием ее компонентов (биогеноценотический покров Земли). Биосфера является естественной средой обитания любого живого организма.
Естественная среда – это все живое и безжизненное, что окружает организмы, и с чем они взаимодействуют. Различают воздушную, водную и грунтовую среду, последним может быть и тело другого организма (для паразитирующих организмов).
Экосистема (от греч. oikos – жилище, местопребывание; sustema – целое) – единый естественный комплекс, образованный за большой период времени живыми организмами и средой обитания (атмосфера, почва, водоем и др.), в котором все компоненты тесно связаны обменом вещества и энергии. Экосистемой может стать лишь среда, где имеет место стабильность и четко функционирует внутренний круговорот вещества и энергии.
Круговорот вещества и энергии – закономерный процесс многократного участия вещества и энергии этого вещества, космической, иных форм энергий в явлениях, протекающих в биосфере и определяющих характер этих явлений.
Биогеоценоз (био… + гео … + греч. koinos – общий) – совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, почвы и гидрологических условий, растительности, животного мира и мира микроорганизмов), имеющая свою, особенную специфику и взаимодействие слагающих ее компонентов, определенный тип обмена веществом и энергией между собой и другими явлениями природы. Элементарными единицами биогеоценоза являются биоценоз и биотоп.
Биоценоз – сообщество организмов (продуцентов, консументов и редуцентов), которые живут в границах одного биотопа, связанное определенными отношениями между собой и окружающей средой.
Биотоп – естественное, относительно однородное пространство определенного естественного биоценоза. Биотоп включает в себя минеральное и органическое вещество, а также жизненное пространство определенного биотопа.
В современной экологии различают биоценозы суши, воды, естественные и антропогенные, насыщенные и ненасыщенные, полночленные и неполночленные.
Сообщество – это система взаимодействующих, дифференцированных по экологическим нишам видов животных и растений, часто конкурирующих между собой. Понятие «сообщество» зачастую употребляется в классической экологии, как синоним биоценоза.
Популяция (от фр. papulation – население) – совокупность особей одного вида, имеющая общий генофонд и населяющая определенное пространство с относительно однородными условиями обитания. Все популяции имеют свойство, благодаря которому они поддерживают свою численность на оптимальном уровне в условиях среды. Этим свойством является гомеостаз.
Гомеостаз (от греч. homios – подобный, statos – неподвижный) – состояние внутреннего динамического равновесия естественной системы (экосистемы), которое поддерживается регулярным восстановлением ее основных элементов и вещественно-энергетического состава, а также постоянным функциональным саморегулированием компонентов.
Вид (биологический) – совокупность организмов с родственными морфологическими признаками, которые могут скрещиваться между собой и имеют общий генофонд. Это основная структурная единица в системе живых организмов. Виды имеют морфологические, физиолого-биохимические, эколого-географические (биогеографические) и генетические характеристики.
Биомасса – выраженное в единицах массы или энергии количество живого вещества тех или иных организмов, приходящееся на единицу площади или объема.
Живое вещество – совокупность тел живых организмов, населяющих землю.
Продуктивность биологическая – скорость продуцирования биомассы популяцией или сообществом (экосистемой) на данной площади за единицу времени. Различают первичную – биомасса надземных и подземных органов, а также энергия и биогенные летучие вещества, производимые продуцентами на единице площади за единицу времени, и вторичную – биомасса, энергия и биогенные летучие вещества, производимые всеми консументами на единице площади за единицу времени.
Катаценоз – заключительная стадия вымирания биотической общности, деградация биотической среды.
Климакс (от греч. klimax – лестница) – заключительный этап развития биогеоценозов в данных условиях существования; завершающая довольно стойкая фаза (не изменяется на протяжении десятилетий) естественной биогеноценотической сукцессии, которая отвечает экологическим условиям данной местности в определенный период геологического времени.
Сукцессия (от лат. succession – преемственность) – последовательное изменение биоценозов, которое возникает на одной и той же территории (биотопе) под влиянием естественных или антропогенных факторов.
Энтропия (от греч. en – в, внутрь; trope – поворот, превращение) – величина, характеризующая меру связанной энергии (?S), которая в изотермических процессах не может превратиться в работу. Является мерой беспорядка в живых системах.
Негэнтропия – величина, обратная энтропии; мера отдаленности от состояния энергетического равновесия, стремление к неравномерности. Негэнтропия увеличивается с возрастанием организованности системы[1 - Эти и целый ряд других понятий более широко будут раскрыты далее в соответствующих разделах и главах.].
Основными экологическими законами являются:
• биогенетический – онтогенез есть краткое и быстрое повторение филогенеза, в ходе которого индивидуальное развитие служит источником новых направлений эволюции, а она отражается на онтогенезе;
• биогенной миграции атомов В. И. Вернадского – миграция химических элементов на земной поверхности и в биосфере в целом осуществляется живым веществом и в среде, геохимические особенности которой обусловлены живым веществом;
• физико-химического единства живого вещества В. И. Вернадского – живое вещество физико-химически едино. При всей разноколичественности живых организмов они настолько физико-химически схожи, что вредное для одних не может быть абсолютно безразлично для других;