Для единицы поверхности (S):
Поверхностное натяжение представляет собой свободную энергию единицы поверхности. Запас свободной поверхностной энергии гетерогенной системы с межфазной поверхностью раздела S: F = ? х s. Самопроизвольное стремление к уменьшению F системы может быть реализовано или путем уменьшения межфазной поверхности (например, при коагуляции), или за счет уменьшения поверхностного натяжения раствора. Если растворенное вещество способно уменьшать поверхностное натяжение раствора, то оно будет концентрироваться (адсорбироваться) на поверхностном слое. Эти вещества называют поверхностно-активными веществами (ПАВ). Связь между адсорбцией и поверхностным натяжением выражается уравнением Гиббса:
где Г – удельная адсорбция растворенного вещества в моль/м
, т. е. избыточная концентрация растворенного вещества в поверхностном слое раствора в сравнении с его объемной концентрацией с; s – поверхностное натяжение раствора, Дж/м
; R – универсальная газовая постоянная; Т – температура, К.
Производная (изменение поверхностного натяжения с концентрацией) называется поверхностной активностью растворенного вещества. Такие вещества называются поверхностно-инактивными веществами (ПИАВ). Изменение поверхностного натяжения по сравнению с поверхностным натяжением растворителя описывается эмпирическим уравнением Шишковского:
?
– ? = B ln(1 + Ac) < 0, где А и В – эмпирические константы. Продифференцировав, имеем:
– удельная адсорбция при максимально заполненной поверхности (граничная удельная адсорбция). Отсюда В = Г
RT. Площадь, которую занимает одна молекула в адсорбированном слое:
S = 1 / Г
N.
13. Хроматографический адсорбционный анализ
Явление адсорбции получило широкое применение. Одним из способов использования данного явления является хроматография. Хроматографический адсорбционный анализ был разработан русским ученым М. С. Цветом. Сущность метода заключается в следующем: через слой адсорбента пропускают раствор, содержащий несколько веществ. Отдельные вещества в растворе обладают различной способностью к адсорбции, поэтому они располагаются в разных частях адсорбционного слоя. Вещества, которые обладают большим сродством к адсорбенту, задерживаются в верхней части слоя, вещества с меньшей адсорбируемостью располагаются ниже. В результате происходит разделение сложной смеси на отдельные составные компоненты.
Методом хроматографического адсорбционного анализа впервые был разделен пигмент растительного листа. Пигмент образуют хлорофилл, ксантофилл и каротин. Путем повторной хроматографии хлорофилл был также разделен на хлорофилл а и хлорофилл б. Зеленый пигмент был извлечен низкокипящим бензином, полученный элюат был отфильтрован измельченным углекислым кальцием. После фильтрации в колонке наблюдалось образование различно окрашенных слоев, которые называются хроматограммой. Слои могут перекрывать друг друга или быть отделенными.
В адсорбционной хроматографии принято различать два ее основных вида: молекулярную хроматографию и ионообменную хроматографию. В первом случае имеет место различная адсорбируемость молекул различных веществ, во втором – неодинаковая адсорбируемость различных ионов.
Ионообменная хроматография основана на способности сорбентов не только поглощать, но и обменивать поглощенные ими компоненты на другие, которые находятся в жидкой среде. К таким сорбентам следует отнести гидросиликаты (цеолиты и пермутиты), а также ионообменные смолы, или иониты. Иониты обладают ограниченной набухаемостью, практически нерастворимы в воде. Частицы ионообменных смол состоят из неподвижного аниона (катиона) и подвижного катиона (аниона). Последние способны обмениваться на другие подвижные ионы. Обмен ионов сорбента и раствора происходит в эквивалентных соотношениях. Если подвижные ионы являются катионами, то ионит называют катионитом, если, наоборот, подвижностью обладают анионы, то ионит является анионитом. Существуют также биполярные иониты, или амфолиты, они проявляют свойства катионитов и анионитов. Метод ионной хроматографии может применяться для изучения сложных природных объектов, составными частями которых являются вещества, находящиеся в коллоидном состоянии. Одним из таких объектов является почва. Как правило, почвенные коллоидные частицы заряжены отрицательно, поэтому имеет место катионный обмен. При движении почвенной влаги наблюдается разделение катионов, встречающихся в почве. Анализируя почвенные хроматограммы, удалось глубже понять сущность происходящих процессов. Так, например, при образовании подзолистых почв имеет место закрепление ионов водорода в верхних частях, а катионы щелочно-земельных металлов проникают в нижние слои почвы. Таким образом, верхние слои почвы закисляются. Достоинство метода хроматографии является возможность разделять сложные смеси, не меняя химический состав компонентов. Это важно при исследовании биологических жидкостей, содержащих малоустойчивые органические соединения, состав и строение которых зависят от незначительного изменения температуры, кислотности и других факторов. Хроматографический анализ применяется для выделения из растворов веществ, концентрация которых очень мала: гормонов, интерферонов, витаминов и др. Этот метод позволяет разделить сходные по своим свойствам вещества, разделение которых химическими методами представляет собой большие трудности (аминокислоты, редкоземельные металлы).
14. Закономерности ионного обмена в коллоидных растворах. Ацидоиды. Роль pН в ионном обмене
В коллоидных системах обнаружено свойство твердых частиц обмениваться на одноименные по знаку заряда ионы, находящиеся в жидкой среде.
В частицах, которые окружены двойным электрическим слоем, такой способностью обладают противоионы, поэтому они называются обменными ионами.
Процесс ионного обмена можно выразить следующим равенством:
2 АВ + В
= А
В + 2В
,
где А – точка на поверхности частицы, несущая элементарный отрицательный заряд; В
– одновалентный катион; В
– двухвалентный катион.
Способность катиона В
адсорбироваться на данной частице выражена сильнее, чем у катиона В
. Следовательно, при относительно малой концентрации ионов В
в растворе они вытеснят в раствор значительные количества ионов В
из двойного слоя.
В этом случае говорят, что ионообменное равновесие сдвинуто вправо.
Уравнение для ионного обмена, в котором участвуют данные катионы, имеет вид:
X(В
) / X(В
) = K C(В
) / [C(В
)]
,
где X(В
) и X(В
) – количества катионов в двойном слое; C(В
) и C(В
) – концентрация катионов в растворе.
В ионном обмене могут участвовать также ионы Н
и ОН
. Ионный обмен с участием этих ионов способен изменить реакцию среды в ту или иную сторону.
Если у коллоидных частиц обменными являются ионы водорода, то они адсорбируют из раствора содержащиеся в нем катионы. Содержание водородных ионов в результате обмена увеличивается. Такие коллоиды иначе называют ацидоидами.