= S / V = k / d = kD,
где V – объем дисперсной фазы, мл.
Для сферических частиц уравнение принимает вид:
k – коэффициент формы частиц; d – диаметр частицы, м
.
Формула для расчета удельной поверхности (S
) системы с шарообразными частицами:
где n – число частиц, м
; S
– поверхность каждой частицы.
где n
– число частиц, кг; r – плотность вещества, г/см
.
Корреляционная спектроскопия рассеянного света: в определенном оптическом объеме V
, подсчитывают число частиц n. Зная концентрацию частиц С и n, находят объем частицы
:
= С / (vd),
где d – плотность дисперсной фазы.
Зная объем, можно вычислить радиус частиц:
Зная радиус частиц, можно вычислить удельную поверхность S
.
5. Коллоиды. Примеры коллоидных систем, их распространенность в природе и значение для современной технологии
Дисперсионные микрогетерогенные системы, частицы дисперсной фазы которых имеют размеры 10
–10
м и равномерно распределены в дисперсной среде, называют коллоидными растворами.
1. Суспензоиды (или лиофобные коллоиды, необратимые коллоиды). Так называют коллоидные растворы металлов, их оксидов, гидроксидов, сульфидов и других солей. Первичные частицы дисперсной фазы коллоидных растворов этих веществ по внутренней структуре не отличаются от структуры соответствующего вещества и имеют кристаллическую решетку. Суспензоиды – типичные коллоидные системы с сильно развитой межфазной поверхностью. От суспензий они отличаются более высокой дисперсностью, но, как и суспензии, не могут длительно существовать в отсутствие стабилизатора дисперсности. Для получения устойчивых коллоидных растворов добавляют стабилизатор дисперсной системы ионной или молекулярной природы. Ионная стабилизация связана с присутствием электролитов, создающих ионные пограничные слои между дисперсной фазой и дисперсионной средой. Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт), добавляемые для стабилизации, называют защитными коллоидами. Адсорбируясь на границе раздела фаз, они образуют в поверхностном слое сетчатые структуры, создающие структурно-механический барьер, препятствующий объединению частиц дисперсной фазы. Структурно-механическая стабилизация имеет решающее значение для стабилизации взвесей, паст, пен, концентрированных эмульсий. Осадки, остающиеся при их выпаривании, не образуют вновь золя при контакте с дисперсионной средой. Вязкость этих золей незначительно отличается от вязкости дисперсионной среды.
2. Мицеллярные коллоиды. Их называют также полуколлоидами (семиколлоидами). Они возникают при достаточной концентрации дифильных молекул низкомолекулярных веществ путем их ассоциации в мицеллы сферической или пластинчатой формы. Мицеллы представляют собой скопления правильно расположенных молекул, удерживаемых преимущественно дисперсионными силами. Образование мицелл характерно для водных растворов моющих веществ, например мыл и синтетических моющих веществ, некоторых органических красителей, дубящих веществ (таннидов), алкалоидов. В других средах, например в этаноле, эти вещества образуют молекулярные растворы.
3. Молекулярные, или лиофильные коллоиды. Их называют обратимыми, т. к. после выпаривания их растворов и добавления новой порции растворителя сухой остаток вновь переходит в раствор. К ним относятся природные и синтетические высокомолекулярные вещества с молекулярной массой от 10 000 до нескольких миллионов. Молекулы этих веществ имеют размеры коллоидных частиц, поэтому такие молекулы называют макромолекулами. Для получения растворов молекулярных коллоидов достаточно привести сухое вещество в контакт с подходящим растворителем. Неполярные макромолекулы растворяются в углеводородах (например, каучуки – в бензоле), а полярные макромолекулы – в полярных растворителях (например, некоторые белки – в воде). Их растворы имеют значительную вязкость, возрастающую с увеличением концентрации растворов. Повышение концентрации макромолекулярных растворов, добавки веществ, понижающих растворимость полимера, и часто понижение температуры приводят к застудневанию – превращению сильно вязкого раствора в сохраняющий форму твердообразный студень. Растворы полимеров с сильно вытянутыми макромолекулами застудневают при небольшой концентрации раствора. Так, желатин и агар-агар образуют студни и гели в 0,2–1,0 %-ных растворах. Высушенные студни способны вновь набухать (существенное отличие от гелей).
Коллоиды широко распространены в природе, технике и быту.
6. Оптические методы исследования дисперсных систем (нефелометрия, турбидиметрия)
Если пропустить пучок сходящихся лучей через коллоидный раствор, то наблюдается образование светящегося конуса. Этот эффект в честь автора назван эффектом Тиндаля. Явление Тиндаля наблюдается не только у коллоидных, но и у всех дисперсных систем, степень дисперсности которых сравнима со степенью дисперсности коллоидов. Эффект объясняется тем, что пучок параллельных лучей, попадая на поверхность частицы, линейные размеры которой велики по сравнению с длиной световой волны, вызывают отражение по законам геометрической оптики. Если же длина волны падающего света превышает линейные размеры частицы примерно в 10 раз, то произойдет дифракция световой волны, вызывающая светорассеяние, причем рассеяние света в пространстве симметрично и называется рэлеевским рассеянием. Рассеяние света частицами больших размеров сильнее, но неравномерно: оно больше в направлении движения луча падающего света. Теория рассеяния света применима при измерении интенсивности как рассеянного света (собственно нефелометрия), так и ослабленного, вследствие рассеяния, проходящего света (турбидиметрия).
Приборы для изучения рассеяния света дисперсными системами делятся на нефелометры и турбидиметры; в качестве последних используются также абсорбциометры, колориметры и спектрофотометры.
Нефелометрами называются приборы, непосредственно измеряющие интенсивность света, рассеянного в определенном направлении (или, реже, в различных направлениях). В фотоэлектрических колориметрах (например, ФЭК-Н-57, ФЭК-56-2) также предусмотрены приспособления для использования их как нефелометров. Нефелометрия – это совокупность методов измерения интенсивности рассеянного в данной среде видимого или ультрафиолетового света с целью определения концентрации, размера и формы диспергированных частиц в дисперсных системах. После калибровки по суспензиям с известными концентрациями с помощью нефелометрии можно определять концентрацию дисперсной фазы, что используется в химическом анализе. Первоначально метод нефелометрии применялся для анализа некоторых естественно мутных объектов (например, речной воды). Позже для определения концентрации растворенных веществ стали использоваться искусственные суспензии. Например, для определения сульфатов в воде получают при помощи BaCl
суспензию BaSO
, интенсивность светорассеяния которой измеряют в нефелометре, а затем по калибровочному графику находят концентрацию ионов SO
. Метод применяется для определения нефтепродуктов в воде, при анализе фармацевтических, пищевых и иных продуктов.
Измеряя интенсивность светорассеяния в растворах при разных концентрациях, также определяют молекулярные массы полимеров. Угловая зависимость светорассеяния для больших частиц, а также степень поляризации рассеянного света дают информацию о форме частиц (или макромолекул). Кроме того, нефелометрия используется при исследовании эмульсий и других коллоидных систем, в метеорологии, физике моря при изучении некоторых биологических объектов. Нефелеметрический анализ пригоден для определения веществ в области концентраций 10
–10
% с точностью около ±5 %.
Турбидиметры измеряют общее рассеяние света под всеми углами по уменьшению интенсивности света, прошедшего через суспензию, образованную частицами определяемого вещества в жидкой фазе (по эффективной абсорбции света), и могут применяться лишь для бесцветных золей. Из-за малой точности турбидиметрия используется только для определения компонентов, для которых нет удовлетворительных фотометрических и других методов анализа. По методам регистрации все приборы делятся на визуальные и фотоэлектрические с различными типами фотоэлементов и фотоумножителей. Фотоумножители применяются обычно в нефелометрах, поскольку в них необходимо измерять весьма слабые световые потоки.
7. Оптические свойства коллоидов. Статическое рассеяние света. Оптическая анизотропия
Взаимодействие света с дисперсными системами имеет ряд особенностей, связанных с рассеянием света частицами дисперсной фазы. При прохождении светового пучка через оптически неоднородную среду – дисперсную систему – обычно наблюдается светящийся конус (конус Тиндаля), видимый на темном фоне. Такое рассеяние света коллоидными растворами называется эффектом Тиндаля. Он характерен для растворов коллоидных систем (например, золей металлов, табачного дыма), в которых частицы и окружающая их среда различаются по показателю преломления. Если размеры частиц меньше половины длины волны света, то происходит рассеяние света в результате его дифракции. Область видимого света характеризуется длиной волн от 760 до 400 нм. Поэтому в молекулярных и коллоидных системах видимый свет рассеивается, а в проходящем свете эти растворы прозрачны. Наибольшей интенсивности рассеяние света достигает в коллоидных системах, для которых светорассеяние является характерной качественной особенностью. Обнаружение в растворе пути луча источника света при рассматривании раствора перпендикулярно к направлению этого луча позволяет отличить коллоидный раствор от истинного. Если же длина волны падающего света превышает линейные размеры частицы примерно в 10 раз, то произойдет дифракция световой волны, вызывающая светорассеяние, причем рассеяние света в пространстве симметрично и называется рэлеевским рассеянием по имени исследователя. Дж. Рэлей создал теорию светорассеяния коллоидных растворов и предложил уравнение, характеризующее этот процесс.
Дж. Рэлеем был рассмотрен простейший случай рассеяния света при следующих условиях:
1) малой концентрации дисперсной системы;
2) малом размере частиц (отношение длины волны падающего света formula к радиусу частицы r не менее 10);
3) изометричной форме частиц.
8. Поглощение света дисперсными системами, уравнение Бугера-Ламберта-Бера. Определение размеров коллоидных частиц
Уравнение Рэлея справедливо для монодисперсных разбавленных коллоидных растворов при размерах частиц дисперсной фазы r < 40–70 нм. Более общие выводы о рассеянии света, справедливые для систем всех степеней дисперсности, сформулированы в теории Г. Ми. В данной теории учитывается, что при больших размерах частиц картина рассеяния света осложняется возникающими электрическими и магнитными полями. Максимум рассеяния согласно Г. Ми имеет место при размерах частиц около 0,25?, где ? – длина волны видимой части спектра.
Явления рассеяния и поглощения света связаны также с такими свойствами, как окраска растворов, концентрация растворенного вещества. Поглощение света имеет избирательный характер. Поглощение света для молекулярных растворов определяется по уравнению Бугера-Ламберта-Бера:
I = I