Оценить:
 Рейтинг: 3.6

Коллоидная химия. Шпаргалка

Год написания книги
2009
<< 1 2 3 4 5 6 7 8 ... 13 >>
На страницу:
4 из 13
Настройки чтения
Размер шрифта
Высота строк
Поля

= ?S + KV.

Разделив это выражение на объем фазы, получаем:

Из последнего уравнения следует, что при неизменном объеме фазы вклад поверхностной энергии в общую энергию фазы возрастает с увеличением удельной поверхности или степени дисперсности фазы. Если степень дисперсности фазы невелика, вкладом поверхностной энергии в полную энергию фазы обычно пренебрегают. Вклад поверхностного слоя в свойства фазы и системы учитывают при изучении дисперсных систем – гетерогенных систем, одна из фаз которых является сплошной (дисперсионная среда), а другая – раздробленной (дисперсная фаза).

На границе конденсированной фазы с газом поверхностное натяжение всегда положительно, поскольку частицы конденсированной фазы взаимодействуют друг с другом сильнее, чем с молекулами газа. Конденсированная фаза будет стремиться уменьшить свою поверхностную энергию, уменьшая либо площадь поверхности фазы (поэтому капля жидкости в невесомости принимает форму сферы), либо поверхностное натяжение. Процесс самопроизвольного изменения концентрации вещества у поверхности раздела двух фаз называется адсорбцией.

11. Термодинамическое описание разделяющей поверхности

Разделяющая поверхность – это геометрическая поверхность, которая воспроизводит форму поверхности разрыва и располагается параллельно последней. Если представить идеализированную систему в которой каждая из интенсивных величин имеет характерные для данной объемной фазы значения, и сравнить ее с реальной системой, то получим, что разности соответствующих экстенсивных параметров в данных системах представляют собой поверхностные избытки. Например, состав поверхностного слоя определяется избыточным числом молей компонентов n

.

Для нахождения последнего необходимо рассмотреть изменение концентрации компонента системы вдоль нормали, направленной из одной фазы в другую. В реальных системах данное изменение выражается функцией С (x), которая представляет собой кривую и имеет постоянные величины в глубине фаз. В идеализированной системе данная функция представлена двумя прямыми, доходящими до разделяющей поверхности. Состав поверхностного слоя будет выражен формулой:

где n

– избыток количества вещества в поверхностном слое; xb и xa – объемы разделяемых фаз;

C

и C

– концентрация вещества в реальной и идеализированной системах; s – площадь поверхности раздела.

Итак, параметр n

выражает избыток компонента, связанный со «сгущением» интенсивного параметра в области поверхностного слоя, – концентрации С. Аналогично в виде избытков выражаются все термодинамические функции поверхностного слоя. Так, энергия поверхностного слоя определяется как разность ее значений в реальной и идеализированной системах:

U

= U – (U

+ U

)

или

U = U

+ U

+ U

.

Члены правой части этих выражений различаются тем, что U

и U

являются полными количествами энергии в двух объемных фазах, а U

представляет собой поверхностный избыток.

Аналогичные выражения записывают для других термодинамических функций: энтальпии, энтропии свободных энергий Гельмгольца и Гиббса.

Достоинством данного метода описания поверхностного слоя является отсутствие необходимости уточнения его границ. Функции, выражающие избытки, являются инвариантными в отношении толщины поверхностного слоя, однако они зависят от положения разделяющей поверхности.

Поверхностный слой может подвергаться воздействию изменений температуры и состава. Поэтому необходимо принять во внимание в качестве переменных поверхностные энтропию S

и состав n

, в результате будет получено фундаментальное уравнение для энергии разделяющей поверхности:

dU

= T

dS

+ ?ds + ??

dn

,

где dU

– внутренняя энергия поверхностного слоя T

– температура разделяющей поверхности;

S

– энтропия поверхностного слоя; s – коэффициент пропорциональности, численно равный поверхностному натяжению; s – площадь поверхностного слоя; m

– химический потенциал поверхностного слоя; n

– состав поверхностного слоя.

Данное уравнение находят путем вычитания уравнений для двух объемных фаз из выражения для внутренней энергии U всей системы. Согласно теории Гиббса для плоского поверхностного слоя последнее уравнение справедливо при любом положении разделяющей поверхности; для искривленной поверхности к нему добавляются члены, связанные с кривизной.

12. Адсорбция. Площадь, приходящаяся на одну молекулу в адсорбционном слое

Адсорбция (от лат. ad – «на, при» и sorbeo – «поглощаю») – это поглощение вещества из газообразной среды или раствора поверхностным слоем жидкости или твердого тела, следствием которого является самопроизвольное концентрирование веществ вблизи поверхности раздела фаз. Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а поглощаемое из объемной фазы вещество – адсорбатом. После адсорбции внутреннее притяжение частично компенсируется притяжением со стороны адсорбционного слоя, и поверхностное натяжение уменьшается. Слой жидкости, который прилегает к поверхности и равен по толщине радиусу сферы молекулярного взаимодействия, называется поверхностным слоем. Молекулы жидкости в поверхностном слое находятся под действием сил притяжения соседних молекул. Равнодействующая этих сил притяжения направлена в глубь жидкости, передвижение молекул из глубины жидкости в поверхностный слой требует затрат работы на преодоление сил межмолекулярного сцепления (когезии). Работа, выполняемая для увеличения поверхности жидкости на единицу, называется поверхностным натяжением. Поверхностное натяжение можно рассматривать как силу, которая действует на единицу длины контура, который ограничивает поверхность и пытается ее сократить по нормали к касательной к поверхности. Поверхностное натяжение измеряется в Дж/м

или Н/м. Работа по образованию новой поверхности, которая происходит в условиях изотермического или обратимого процесса (максимальная работа), осуществляется за счет изменения изохорно-изотермического потенциала.
<< 1 2 3 4 5 6 7 8 ... 13 >>
На страницу:
4 из 13