Линейный четырехполюсник характеризуется комплексным коэффициентом передачи:
(25)
Модуль коэффициента передачи К(?) дает отношение действительных амплитуд выходного и входного напряжений, а аргумент (?
(?) – изменение начальной фазы выходного напряжения по сравнению с входным.
Пусть требуется обеспечить неискаженную передачу сигнала U
(t) через некоторый четырехполюсник Сигнал на выходе будет иметь вид:
(26)
В идеальном случае при прохождении через четырехполюсник все спектральные составляющие входного сигнала должны изменяться по амплитуде в одинаковое число раз k и испытывать одинаковое запаздывание t
во времени. Для неискаженного воспроизведения сигнала комплексный коэффициент передачи четырехполюсника должен иметь вид:
К(?) = Кe
, (27)
т. е. его модуль должен быть одинаковым для всех передаваемых частот (К(?) = const), а аргумент – представлять собой линейную функцию частоты (?k(?) = – ?Х
). Зависимость модуля коэффициента передачи от частоты называют амплитудно-частотной (или просто частотной) характеристикой, а от фазы – фазочастотной (или фазовой) характеристикой.
Наряду с требованиями, предъявляемыми к четырехполюсникам в отношении идеальной передачи полезных сигналов с некоторой шириной спектра ??
,необходимо, чтобы коэффициент передачи четырехполюсника вне желаемой частоты обращался в нуль так как любые сигналы, спектр которых находится вне полосы частот полезного сигнала, являются помехами. Идеальный четырехполюсник должен иметь п-образную частотную характеристику.
У реального четырехполюсника форма характеристики отличается от п-образной. Это приводит к искажению сигнала – тем большему, чем сильнее это отличие. Допустимые искажения сигнала и требования к характеристикам K(?) и ?
(?) зависят от конкретной системы передачи сигнала. В тракте радиовещательного приемника удовлетворительными принято считать четырехполюсники, для которых в рабочей полосе частот коэффициент передачи меняется менее чем в
раз.
12. Фильтрующие свойства последовательного колебательного контура
Последовательный контур изображенный на рис. 4 – пример линейного четырехполюсника, который можно использовать в качестве фильтра.
Рис. 4
Входными зажимами фильтра являются зажимы АА', выходными – ВВ'. Коэффициент передачи такого фильтра:
где R – активное сопротивление контура (сопротивление источника ЭДС не учитывается).
Представим числитель и знаменатель в показательной форме:
откуда модуль и аргумент коэффициента передачи соответственно имеют вид:
(29)
(30)
Выражение – это амплитудно-частотная, а (30) – фазочастотная характеристика фильтра.
Полосу пропускания фильтра определяют из условия, что на границе полосы модуль коэффициента передачи фильтров уменьшается в
раз по сравнению с его значением при резонансе, т. е. при ? = 0. Уравнение для определения полосы пропускания последовательного контура имеет вид:
(31)
где ? – расстройка, соответствующая граничным частотам фильтра.
Из (31) получим выражение для относительной ?
и абсолютной ?f
полосы пропускания фильтра:
(32)
При рассмотрении фильтрующих свойств последовательного контура мы пренебрегли внутренним сопротивлением источника ЭДС. В реальной ситуации любой источник сигнала характеризуется некоторой ЭДС и внутренним сопротивлением R. Если источник включается в последовательный контур, полное активное сопротивление контура становится равным R + R
с учетом R
, добротность последовательного контура
где
– собственная добротность контура.
Из-за больших потерь энергии, возникающих на внутреннем сопротивлении генератора, значительно уменьшается добротность контура, и расширяется полоса пропускания фильтра.
13. Фильтрующие свойства параллельного колебательного контура
Рассмотрим фильтрацию радиосигнала в схеме с параллельным контуром (рис. 5). Импенданс этого контура Z
. Коэффициент передачи четырехполюсника, имеющего входные зажимы АА', выходные ВВ':
(34)
где ?
, U
– комплексные амплитуды ЭДС и напряжения на контуре соответственно.
Рис. 5