= у
– у
; … ?
= у
– у
.
Базисные абсолютные приросты показывают увеличение или снижение уровня исследуемого показателя по сравнению с предыдущим периодом.
Между базисными и цепными абсолютными приростами существует зависимость:
Таким образом, базисный абсолютный прирост равен сумме последовательных цепных приростов. Это связь позволяет определить базисные абсолютные приросты другим путем.
Рассчитаем показатель среднего абсолютного прироста для заданного динамического ряда. Данный показатель получают на основе зависимости между базисными и цепными абсолютными приростами:
Следовательно:
где n – период времени,
или:
где n – период времени, соответствующий количеству приростов. Показатель среднего абсолютного прироста показывает, на сколько единиц (например ежегодно за изучаемый период), изменяется в среднем уровень динамического ряда.
19. Относительные показатели динамики. Абсолютное значение однопроцентного прироста
К относительным показателям динамики относятся:
1) темп роста;
2) темп прироста;
3) средний темп роста;
4) средний темп прироста.
Данные показатели характеризуют интенсивность изменения уровня динамического ряда за период и выражаются в форме коэффициента или в процентах.
Предположим, что дано n уровней динамического ряда: у
, у
, …, у
, у
.
Рассчитаем показатель темпа роста для заданного динамического ряда.
Темп роста – это отношение последующего уровня динамического ряда к предыдущему уровню. Если числитель меньше знаменателя, то говорят о темпах снижения.
Различают базисные и цепные темпы роста.
Базисные темпы роста:
Эти показатели показывают, во сколько раз последующий уровень динамического ряда больше или меньше его базисного уровня у
.
Цепные темпы роста:
Эти показатели показывают, во сколько раз последующий уровень динамического ряда больше или меньше его предыдущего уровня.
Базисный темп роста всего динамического ряда равен произведению последовательных цепных темпов роста. Данная взаимосвязь позволяет определить базисные темпы роста на основе цепных темпов роста.
Рассчитаем показатель темпа прироста для заданного динамического ряда.
Темп прироста – это отношение абсолютного прироста к базисному уровню ряда:
Темп прироста – это темп роста, уменьшенный на одну единицу, или на 100 %. Различают базисные и цепные темпы прироста. Они показывают, на сколько процентов изменился уровень.
Рассчитаем показатель среднего (годового) темпа роста для заданного динамического ряда. В основу его расчета положена взаимосвязь базисного и цепных темпов роста.
Доказано, что x
= x
? x
?… ? x
. Заменим каждое x на
. Отсюда получим три формулы среднего темпа роста:
1)
где n – это показатель времени, за который рассчитывается средний темп роста;
2)
где у – уровень ряда (абсолютный показатель);
3)