Для снижения вредного воздействия перекиси водорода существует фермент каталаза. Каталаза совместно с СОД составляют первый эшелон защиты клеток от АФК, причем надо отметить, что это очень эффективный заслон от деструктивных действий свободных радикалов.
Второй эшелон защиты составляет группа ферментов пероксидаз, которые восстанавливают гидроперекиси до гидроокисей и воды. В число мишеней для пероксидаз входит и перекись водорода. В качестве доноров для восстановления пероксидаз используется глутатион (может применяться также восстановленный NADP). Глутатионпероксидаза превращает перекись водорода в воду при участии кофактора глутатиона, который окисляется в этой реакции, однако фермент глутатионредуктаза восстанавливает окисленный глутатион. Многие ученые склоняются к тому, чтобы считать глутатион ключевым ферментом антиоксидантной защиты в пределах клетки. Он также помогает выводить токсины из организма и обладает противораковыми свойствами. Следует отметить, что витамин С передает свободный радикал глутатиону и он обезвреживается. Для восстановления окисленного глутатиона используются ресвератрол и антоцианины. Важно подчеркнуть, что основной фермент второго эшелона защиты глутатионпероксидаза является селензависимым. При увеличении в питании содержания селена в десять раз происходит удвоение в организме этого крайне значимого фермента, защищающего организм как от преждевременного старения, так и от рака.
Особенностью глутатиона является наличие серосодержащих групп. Поскольку сера является клейким веществом, к ее молекулам, обезвреживаясь, могут прилипать токсины, тяжелые металлы, свободные радикалы. В качестве антиоксиданта глутатион работает совместно с тремя ферментами: глутатионтрансферазой, глутатионпероксидазой, глутатионредуктазой. Глутатионтрансфераза ускоряет нейтрализацию глутатионом свободных радикалов, глутатионпероксидаза восстанавливает окисленные свободными радикалами молекулы, а глутатионредуктаза восстанавливает окисленный глутатион. Глутатион производится в печени; для его выработки используются три аминокислоты – глутаминовая кислота, глицин и цистеин. Способствуют производству глутатиона сера, магний и альфа-липоевая кислота. Некоторые ученые считают, что падение уровня глутатиона более чем на 10 % от нормы создает в организме необратимые патологические процессы.
Таким образом, ферментативные антиоксиданты направлены на восстановление активных форм кислорода и других окислителей до стабильных и нетоксичных продуктов.
Среди неферментативных антиоксидантов значимую роль играют хелаторы ионов металлов переменной валентности, в первую очередь железа. К ним относятся ферритин, трансферрин (белок, переносчик железа), гемосидерин, лактоферрин, которые образуют комплексы с этими металлами, что препятствует их взаимодействию с кислородом и образованию его активных форм, а церулоплазмин и металлотионеины соединяются с ионами тяжелых металлов. Большая часть процессов перекисного окисления липидов происходит в липидах клеточных мембран, где ключевую роль играют неферментативные средства антиоксидантной защиты. На первый план здесь выступают жирорастворимые молекулы, обладающие способностью забирать неспаренные электроны на себя с образованием стабильных свободных радикалов, которые не способны разбивать электронные пары других молекул и продолжать цепную реакцию. Они замыкают цепи свободнорадикальных реакций друг на друге и прерывают весь свободнорадикальный процесс. Они также могут передавать неспаренные электроны во всё более гидрофильные соединения, выводя в водную среду и нейтрализуя ферментными антиоксидантами путем окисления глутатиона. Среди неферментативных жирорастворимых антиоксидантов самыми известными являются витамин Е (альфа-токоферол), витамины А и К, альфа-липоевая кислота, убихинон, стерины, сквален, каротиноиды.
Жирорастворимые антиоксиданты находятся в основном объекте воздействия свободных радикалов – клеточных мембранах и липопротеинах крови, причем основной их мишенью являются полиненасыщенные жирные кислоты. Жирорастворимые антиоксиданты защищают от повреждений погруженные в липидный слой белки, а также фосфолипиды. Среди жирорастворимых антиоксидантов главную роль играет альфа-токоферол, который взаимодействует с гидроксильным радикалом и блокирует синглетный кислород, инактивирует супероксидный радикал и ингибирует липидные радикалы, блокирует продуцируемые токсическим воздействием озона радикальные реакции. После обезвреживания свободных радикалов витамин Е (альфа-токоферол) сам становится свободным радикалом. Однако он перерабатывается коэнзимом Q
, селеном, витамином С и снова становится антиоксидантом. Из каротиноидов наиболее известен бета-каротин, являющийся предшественником витамина А. Как и все каротиноиды, он является ловушкой синглетного кислорода. Основными объектами защиты ретиноидов являются биологические мембраны, хроматин клеточного ядра, синтез и метаболизм гликопротеинов. В основном каротиноиды содержатся в оранжевых и красных фруктах и овощах.
Единственным жирорастворимым антиоксидантом, синтезируемым в клетках и непрерывно регенерируемым из окислительной формы с помощью ферментных систем организма, является убихинон (коэнзим Q), который обладает очень высокой антиоксидантной активностью, основанной на окислительно-восстановительной системе убихинол – убихинон. Основная часть внутриклеточного убихинона находится в митохондриях, что крайне важно, так как именно там идут наиболее активные окислительные процессы и постоянно образуются свободные радикалы. Небольшое количество убихинона находится также в лизосомах, аппарате Гольджи, ядрах клетки, эндоплазматическом ретикулуме. Больше всего убихинона содержится в сердце, печени и почках, то есть в органах с высокой метаболической активностью.
Восстановленный коэнзим Q осуществляет защиту белков, ДНК, липидов мембран от повреждающего действия АФК. Он препятствует образованию алкильных радикалов, что в конечном счете обусловливает обрыв цепи перекисного окисления липидов. Он участвует в митохондриальной цепи электронного транспорта в качестве кофермента. Еще одна важная роль убихинона – восстановление витамина Е путем взаимодействия с его токофероксильным радикалом.
Во внеклеточном пространстве организма, в его биологических жидкостях, которые должны оставаться достаточно жидкими, и в тканях, которым противопоказана слишком большая подвижность макромолекул, возможности ферментативных средств защиты от свободных радикалов ограниченны. И здесь на первый план вновь выходят неферментативные антиоксиданты, но уже растворимые в воде. Среди них витамины С, В
, РР, серотонин, мочевая кислота, SH-содержащие соединения. Основную роль в антиоксидантной защите среди водорастворимых неферментативных антиоксидантов выполняют витамин С и система глутатиона. Витамин С играет ключевую роль в защите нейронов головного мозга. Глутатион, относящийся к тиоловым соединениям и содержащий SH-группу, является восстановителем в глутатионпероксидальной реакции. Очень важна его роль и в восстановлении, и переводе витамина С в активную форму, а тиоловые соединения, присутствующие в каждой клетке, даже в небольшом количестве осуществляют мощную защиту от окисления витамина С. Кстати, витамин С так же, как и мочевая кислота, может осуществлять антиоксидантную защиту и в клетках тоже. Высокую антиоксидантную активность проявляет также группа биофлавоноидов, содержащихся в водных экстрактах некоторых растений. Такие биофлавоноиды, как катехин, рутин, эпикатехин, являются ловушками гидроксил-радикала. Квертицин, подобно супероксиддисмутазе, подавляет продукцию супероксиданион-радикала, а биофлавоноид морин не влияет на вышеперечисленные радикалы, но также демонстрирует антиоксидантные свойства. Таковыми обладает ряд гормонов – тироксин, стероидные гормоны, эстрадиол.
Перечисленные средства защиты являются наиболее важными в обычных условиях. Однако в экстренных ситуациях организм может мобилизовать еще и дополнительные эндогенные средства, такие как белки пероксиредоксин, метионинсульфоксидредуктаза, тиоредоксин, металлотионенин и т. д. Эти средства синтезируются, например, при гипероксии, при отравлении веществами, катализирующими формирование дополнительных АФК.
Принимая во внимание, что антиоксиданты разрушаются при взаимодействии со свободным радикалом, как правило, терапевтический эффект достигается при достаточно больших концентрациях антиоксидантов. Однако также известно, что антиоксиданты имеют и обратный эффект: при превышении некоторой пороговой величины (которую, правда, очень сложно определить) они становятся прооксидантами. В этой ситуации представляется целесообразным достигать положительного эффекта не за счет повышения концентрации антиоксидантов, а за счет их многократного использования. Для эффективной работы антиоксидантов необходимо присутствие других антиоксидантов – восстановителей, которые будут персистентно переводить их в активную форму. Как было показано выше, витамин Е восстанавливается коэнзимом Q
или витамином С; витамин С восстанавливается глутатионом; биофлавоноиды восстанавливают как витамин С, так и витамин Е; глутатион восстанавливается как ресвератролом, так и антоцианинами.
Такой же эффект существует между витамином Е и каротиноидами, между витамином Е и селеном. Считают, что альфа-токоферол необходим для поддержания селена в активном состоянии. В то же время селен снижает потребность в токофероле и сохраняет его уровень в крови. На основе вышесказанного можно сделать важный вывод, что полезнее получать как можно больше антиоксидантов вместе с пищей, а не просто принимать витамины, ибо в продуктах питания содержится много разнообразных антиоксидантов, а они «командные» игроки, создающие синергетический эффект.
Таким образом, только комплексное использование правильно подобранных антиоксидантов позволяет добиться максимального защитного эффекта при меньшей концентрации. Всемирная организация здравоохранения с целью получения необходимого уровня антиоксидантов рекомендует увеличить ежедневную дозу принимаемых фруктов и овощей с пяти до восьмидесяти порций, что особенно важно для профилактики раковых заболеваний. Однако не все фрукты и овощи обладают одинаковыми антиоксидантными свойствами. На Западе для оценки оксидативных свойств продуктов используют показатель способности абсорбции радикалов кислорода ORAC (oxygen radical absorbency capacity). Это показывает, насколько эффективно принимаемый продукт справляется с окислением. Рекомендуется потреблять не менее 6000 единиц ORAC в день. Ниже приведена таблица нутриентов, разработанная Департаментом сельского хозяйства США[4 - Холфорд П. Программа «Здоровье на 100 %». М., 2012. 400 с.], в которой каждая порция содержит около 2000 единиц. Прием минимум трех из этих продуктов обеспечивает в день 6000 единиц ORAC.
Считается, что в тех фруктах и овощах, где более насыщенный цвет и в которых «больше вкуса», содержится и наиболее высокий уровень антиоксидантов. Черника, малина, клубника, голубика, ежевика несут очень высокий уровень антиоксидантов – антоцианов. По содержанию бета-каротина на первом месте стоит артишок, затем морковь, горох, шпинат и т. д. В черном шоколаде содержатся сразу два флавоноида, обладающие мощными антиоксидантными свойствами, – галловая кислота и эпикатехин, которые замедляют старение организма. Однако, несмотря на использование диеты с высокой ORAC, в некоторых ситуациях (возраст более 50 лет, болезненное состояние и т. д.) полезно дополнительно применять определенное количество добавок и поливитаминов. Английский диетолог Патрик Холфорд рекомендует следующую комбинацию:
В дополнение Холфорд также советует принимать ежедневно витамин А (3000 мкг) как из ретинола, так и из бета-каротина, витамин С (1500–2000 мг), витамин Е (100 мг) и селен (30— 100 мг), а также витамины группы B, цинк и магний. Однако, прежде чем принимать решение об употреблении тех или иных добавок и витаминов, необходимо оценить степень оксидантного стресса в организме, так как антиоксидантная система здорового человека полностью самостоятельно поддерживает безопасный уровень свободных радикалов.
Диагностика окислительного стресса
Окислительный стресс – это дисбаланс между образованием и нейтрализацией свободных радикалов системой антиоксидантной защиты. Свободные радикалы постоянно образуются как побочный эффект и при нормальном метаболизме в клетках. Около 2 % всего поглощенного кислорода превращается в свободные радикалы. Чтобы оценить степень оксидативного стресса, необходимо выбрать специальные маркеры, которые появляются в биологических жидкостях при окислении белков, молекул ДНК, липидов, углеводов. В качестве таких маркеров широкое распространение получили малоновый диальдегид, тирозин и его производные, 8-гидрокси-2-дезоксигуанозин. Можно также определять степень окислительного стресса по соотношениям глутатиона восстановленного к окисленному, цистеина к цистину, нитрата к нитриту, убихинола к убихинону. Дополнительно можно оценивать содержание глутатиона, цистеина, мочевой кислоты, количество измененных нуклеотидов и т. д.
В наибольшей степени подвержены воздействиям свободных радикалов липиды, находящиеся в мембранах клеток и содержащие ненасыщенные связи. Маркерами окисления липидов являются альдегиды, диальдегиды, изопростаны, метилглиоксаль, производные гексеналя и ноненаля. Отношение окисленных липопротеидов низкой плотности к липопротеидам низкой плотности, а также уровни аутоантител против окисленных липопротеинов низкой плотности используются в качестве плазменного липопротеинового биомаркера окисления. Однако наиболее информативным и широко используемым маркером является малоновый диальдегид (МДА), который образуется при перекисном окислении липидов в случае разрыва молекул полиненасыщенных жирных кислот. МДА создает нерастворимые липид-белковые комплексы в результате взаимодействия с аминогруппами белков и образования оснований Шиффа. Повышенная концентрация в крови МДА является наглядным показателем степени окисления липидов мембран. Хотя МДА находится во многих биологических жидкостях (в том числе сыворотке и плазме крови, моче, выдыхаемом воздухе и даже в клетках), наиболее надежно оценивать его содержание в сыворотке крови. Содержание МДА в сыворотке повышается при заболеваниях печени, почек, легких, панкреатите, атеросклерозе, сепсисе, холецистите, при высоких физических нагрузках и т. д.
Не менее серьезными последствиями для здоровья чревато не только окисление липидов, но и окисление белков. Как известно, белок – это полимер, в котором аминокислоты объединены в одну цепочку. Чтобы белки начали выполнять свои функции, эта цепочка должна быть соответствующим образом расположена в пространстве. Белки, образующиеся из 20 аминокислот, выполняют множество самых разнообразных и важных функций, среди них: метаболическая, сигнальная, транспортная, двигательная, рецепторная, иммунная, управленческая и т. д. Когда нарушается конформация белка, а при окислении пространственная укладка его изменяется, белок перестает выполнять возложенные на него функции со всеми вытекающими отсюда последствиями. Однако в клетках постоянно происходит распад белковых молекул и замена их новыми; причем заменяются как нормальные, так и модифицированные (окисленные) белки.
Но существуют и белки, которые практически не обновляются (например, белки, управляющие активностью ДНК) или обновляются очень медленно (те, что находятся в стенках кровеносных сосудов, головном мозге, сердечных мышцах). В этих белках повреждения накапливаются, – в частности, это относится к карбонильным группам. Карбонильные группы измененных белков могут взаимодействовать с аминогруппами других белков с образованием шиффовых оснований, которые легко гидролизируются. Еще один механизм сшивания белков основан на способности гидроксила атаковать сульфгидрильные группы. Практически любые аминокислоты с неалифатическими остатками – такие, как метионин, фенилаланин, пролин, аргинин, – могут являться участниками описанных процессов в белках. Модификация белков может осуществляться и активными формами азота: так, продукт взаимодействия углекислого газа и пероксинитрита нитрует ароматические аминокислоты и их производные, например катехоламины. В этом случае для оценки степени повреждения, нанесенного активными формами азота, используется образующийся в результате нитрования тирозина 3-нитротирозин.
Вообще, тирозин используется как один из распространенных показателей окисления белков. В организме человека присутствует только L-тирозин, содержащийся в составе белков и ферментов. В результате воздействия свободных радикалов на тирозин он окисляется и образуются его производные: 3-хлортирозин, 3-бромтирозин, дитирозин, 3-нитротирозин, 3,5-дихлортирозин, 3,5-дибромтирозин. Эти соединения особенно активно появляются в биологических жидкостях при воспалительных процессах, атеросклерозе, болезнях Альцгеймера и Паркинсона и др. Можно также оценивать степень окисления белков по концентрации специальных продуктов, которые создаются в биологических жидкостях при окислении белков. Среди них – карбонильные и битирозиновые продукты окисления белков, концентрация окислительно-модифицированного фибриногена, концентрация модифицированного альбумина, степень нарушения связывающей способности сывороточного альбумина, продукты неферментативного гликирования белков и флуоресценции остатков триптофана и т. д.
Окислительный стресс, приводящий к изменениям молекул ДНК и РНК, носит, как правило, мутагенный характер и является одной из причин онкологических заболеваний и преждевременного старения. Со временем накапливается достаточное количество продуктов окислительной модификации нуклеотидов, в частности 8-гидрокси-2-дезоксигуанозин (8-ОН-2-ДГ), который является одним из основных маркеров окислительного повреждения ДНК. Другими менее часто используемыми маркерами являются 5-гидрокси-2-дезоксицитидин и 5-гидрокси-2-дезок сиуридин. Однако в организме существует механизм обнаружения и замены поврежденных нуклеотидов на нормальные. Этот процесс называется репарацией ДНК; если бы такого механизма не было, это приводило бы к повсеместному и раннему образованию опухолей. Эффективно функционирующие процессы репарации удаляют поврежденные нуклеотиды из молекулы ДНК, и они затем выводятся из организма с мочой.
Идентификация поврежденных нуклеотидов подтверждает существование процессов, приводящих к их образованию, а количество измененных нуклеотидов в моче является критерием изменений молекул ДНК и РНК. По некоторым оценкам, общее число ежесуточных повреждений ДНК в одной клетке составляет примерно десять тысяч. В рамках Европейского комитета в настоящее время осуществляются работы по стандартизации нарушений ДНК. Так, принято уровень 8-гидрокси-2-дезоксигуанозин нормировать в диапазоне 0,5–5 повреждений на 10
повреждений гуанозиновых оснований. Следует отметить, что активные формы азота также индуцируют модификацию ДНК главным образом через образование нитрозаминов, а пироксинитрит дезаминирует азотистые основания ДНК. Но что еще более важно, активные формы азота усиливают окислительную модификацию ДНК.
Таким образом, основными маркерами окислительного стресса являются малоновый диальдегид, производные тирозина, 8-гидрокси-2-дезоксигуанозин, а также отношения глутатиона восстановленного к окисленному, убихинола к убихинону, цистеина к цистину (при окислении цистеин переходит в цистин), восстановленной формы мочевой кислоты к окисленной (мочевая кислота может находиться в енольной и в кетонной формах, в енольной мочевая кислота является антиоксидантом), аскорбиновой кислоты к дезоксиаскорбиновой кислоте. Как правило, при болезнях окислительно-восстановительный баланс организма нарушается. Несмотря на то что в организме человека, как показано ранее, имеется многоуровневая антиоксидантная система защиты от свободных радикалов, при воздействии неблагоприятных факторов количество свободных радикалов может значительно возрасти и стать избыточным. Это свидетельствует о том, что антиоксидантная система не справляется с нейтрализацией АФКА, окислительный стресс нарастает и требуется принятие дополнительных мер с помощью антиоксидантной терапии.
Гликирование
Давайте посмотрим, что нам известно, и попытаемся как можно лучше это сформулировать.
Нильс Бор
Под гликированием понимают процесс взаимодействия молекулы сахаров, находящихся в кровотоке, с аминогруппами лизина и аспарагина в составе белков. В результате этого взаимодействия образуются конечные продукты гликирования (КПГ), перекрестные сшивки внутри белковой молекулы и сшивки между различными белками. К сожалению, все эти химические соединения очень опасны для здоровья. Как мы уже писали выше, когда нарушается структура белка, он теряет свою функциональность, а дееспособность клеток во многом зависит именно от работоспособности огромного количества разнообразных белков. КПГ разрушительно действуют на коллаген и нуклеиновые кислоты, без которых невозможен синтез новых белков. Гликированные белки прилипают к внутренним стенкам кровеносных сосудов, индуцируя дисфункцию эндотелия и в конечном счете васкулярную дисфункцию, то есть способность клеток должным образом расширяться и сокращаться. Васкулярная дисфункция рано или поздно будет способствовать образованию бляшек на стенках кровеносных сосудов, что затруднит приток крови ко многим жизненно важным органам.
Важно не путать гликирование и ферментативное гликозилирование. Образующиеся на основе использования ферментов гликопротеины выполняют важные и необходимые для организма специфические функции – например, гиалуроновая кислота и хондроитин сульфат. Но когда глюкоза взаимодействует с белками без участия ферментов, образуются конечные продукты гликирования, наносящие организму вред.
Обычно процесс гликирования начинается с повышения резистентности к инсулину. Инсулин способствует открытию клеток и доставке в них глюкозы. Но если уровень глюкозы длительное время повышен и организм не может с ним справиться, то чувствительность клеток к инсулину начинает уменьшаться; данный процесс приводит к тому, что у клеток возникает тенденция не пропускать внутрь глюкозу, а это приводит к дефициту энергии в организме и к хронической усталости. Так как глюкоза не попадает в клетки и продолжает циркулировать в крови, то ее становится там все больше, в ответ организм продуцирует еще больше инсулина, в результате чувствительность к нему еще больше падает. Но самое неприятное то, что при длительном повышенном содержании глюкозы в крови увеличивается количество реакций гликирования, то есть скорость образования КПГ пропорциональна уровню и длительности экспозиции глюкозы.
Процесс гликирования проходит несколько стадий. Как только что показано, первой стадией является повышение резистентности к инсулину. На второй стадии образуются гликированные белки, то есть сахара соединяются с аминокислотой, происходит дегидратизация сахара с образованием воды, после быстрой потери которой полученный продукт превращается в так называемые основания Шиффа, имеющие двойную связь углерода с азотом, а азот связан с арильной или алькильной группой. Таким образом, третья стадия характеризуется формированием оснований Шиффа. После «перегруппировки Амодори» основания Шиффа приобретают кольцевую структуру, и на четвертой стадии происходит образование так называемых продуктов Амодори и различных карбонильных соединений. Основания Шиффа и продукты Амодори относят к ранним продуктам гликирования. И только на пятой стадии, в результате множества в большинстве необратимых модификаций, которым подвергаются эти продукты (окисление, конденсация, структурные перестройки), образуется разнообразная группа веществ, получившая обобщенное название «конечные продукты гликирования», приносящих непоправимый вред в первую очередь неделящимся клеткам (например, клеткам нервной системы) или долгоживущим клеткам – таким, как клетки хрусталика и сетчатки глаза. Что касается других, делящихся, клеток, то накопленные КПГ не наносят им особого вреда, так как после очередного деления этих клеток они будут удалены вместе с ними.
Вообще говоря, в первую очередь гликируются долгоживущие белки: альбумины, липопротеиды низкой плотности, коллаген, гемоглобины, кристаллины. КПГ также представляют повышенную опасность для коронарных артерий, почечных клубочков, кожного коллагена и эластина и т. д. КПГ способствуют возникновению воспалительных процессов, оксидативного стресса, сахарного диабета, повреждений кожного покрова, сердечно-сосудистых заболеваний, катаракты, почечной недостаточности, атеросклероза сосудов, повышенного артериального давления, повышения холестерина низкой плотности. Кроме того, отдельные КПГ могут создавать сшивки (ковалентные связи с аминогруппами других белков). Появляется все больше научных данных, свидетельствующих о том, что пусковым механизмом даже таких заболеваний, как рак и болезнь Альцгеймера, также являются соединения белков с глюкозой. Дело в том, что гликирование может деструктивно влиять не только на белки, но и на липиды и ДНК, что в конечном счете и может привести к образованию опухолей вследствие мутаций оснований ДНК.
Гликированные белки могут образовываться не только эндогенно, но и поступать экзогенным путем вместе с пищей – например, с поджаренными продуктами, содержащими коричневую корочку. Раньше считалось, что КПГ в пище не усваиваются и не представляют опасности для организма, однако в дальнейшем выяснилось, что это не так, и оказалось, что они после усвоения накапливаются в большом количестве, умножая повреждения, наносимые эндогенно образующимися КПГ. И не только в жареных продуктах содержатся КПГ; к их образованию (хотя и в разной степени) приводит практически любая термообработка – жарка в духовке, во фритюре, кипячение, тушение, подогрев в микроволновке и т. д.
Кроме термической обработки, на возможность формирования конечных продуктов гликирования оказывает прием продуктов с высоким гликемическим индексом. Значительное количество КПГ имеют любые жиры и сыры. Меньше всего КПГ находится в овощах, фруктах, зерновых и бобовых, сырых орехах, молоке. Правда, как недавно выяснилось, фруктоза гликирует белки на порядок активнее, чем глюкоза, поэтому широко известный совет принимать в пищу фрукты без ограничений, мягко говоря, не оправдан. Более того, рекомендация ежедневно съедать не менее пяти фруктов и овощей в последнее время несколько видоизменилась: фрукты теперь не упоминаются. Объективности ради следует отметить, что не все соединения, образующиеся в виде КПГ, оказывают неблагоприятный эффект на обмен веществ, существуют и относительно безвредные. Но имеются и весьма токсичные, которые называют гликотоксинами: они содержатся в пище, приготовленной при высокой температуре (более 120 градусов), и аккумулируются в тканях. Организм человека не может полностью их удалить, только 33 % токсинов выводится с мочой, остальные усваиваются желудочно-кишечным трактом, остаются в тканях и могут нанести вред.
Следует заметить, что глюкоза существует в двух формах – циклической глюкопиранозной и линейной карбонильной, причем в нормальных условиях на первую приходится примерно 99,999 %, и она связывается ферментами в рамках метаболических процессов. Образует шиффовы основания с аминогруппами как раз составляющая всего 0,001 % линейная карбонильная форма глюкозы, обладающая свойствами альдегида. Вследствие возможности внутримолекулярной перегруппировки Амодори из-за наличия гидроксильной группы на атоме углерода продуцируется целый ряд так называемых продуктов Амодори, которые в дальнейшем превращаются в токсичные и необратимые КПГ. В организме человека заложены средства борьбы с гликированием – это глиоксалазная система. Эта система представляет собой комплекс ферментов, предотвращающих образование КПГ, а также осуществляющих детоксикацию продуктов гликирования, таких как один из наиболее вредоносных ее продуктов – метил-глиоксаль, а также других реактивных альдегидов.
Как часть глиоксалазной ферментативной системы, глутатион участвует в реакции детоксификации метилглиоксаля. Глиоксалаза 1 трансформирует метилглиоксаль и восстановленный глутатион в лактоилглутатион. Глиоксалаза 2 гидролизует лактоил-глутатион на глутатион и молочную кислоту. Если глиоксалазная система не справляется с нейтрализацией КПГ, а с возрастом ее защитные функции ослабевают, то КПГ накапливаются, что может провоцировать целый ряд заболеваний, о которых говорилось выше. В некоторых исследованиях утверждается, что КПГ могут связываться с рецепторами RAGE и активировать их. В результате индуцируется активность сигнального пути ядерного фактора каппа В (NF-KB), стимулирующего возникновение системного воспаления, которое связывают с повышением риска онкологии. Предлагаемое блокирование рецепторов RAGE, например телмисартаном, позволяет избежать данных рисков, а учитывая, что гиперактивация рецепторов RAGE снижает эффективность глиоксалазной системы, блокирование этих рецепторов позволит сохранить дееспособность и глиоксалазной системы.
Гликированию препятствует также дипептид карнозин, способный как принимать воздействие карбонилирующих веществ на себя (вследствие сходства его химической структуры со структурой белков, что и используется для сшивок с сахарами вместо тканей организма), так и восстанавливать первоначальное состояние аминокислот, подвергшихся модификации с формированием карбонильных групп. В свою очередь, карбонильные группы нейтрализуются при участии глутатиона и глиоксалазной системы. Существуют также препараты, действующие на отдельные стадии формирования КПГ. Если нейтрализовать негативный результат каждой стадии, можно остановить весь деструктивный процесс, связанный с образованием сшивок и КПГ. Так, для снижения резистентности к инсулину используют хром (200–400 мкг в день), циннулин, N-ацетил-цистеин, корицу. Хром помогает инсулину эмпатировать сахар в клетки, увеличивает чувствительность к инсулину, уменьшает уровень сахара и жира в крови. Циннулин является экстрактом корицы, 3 г которой в день значительно уменьшает уровень сахара в крови. В отличие от корицы циннулин содержит очень мало кумарина, потенциально вредного вещества. N-ацетил-цистеин снижает резистентность к инсулину, уменьшает гликирование, вредное влияние гликирования на нервную систему, способствует улучшению кровоснабжения периферийных участков организма, затрудненного вследствие гликирования. Процесс присоединения сахаров к белкам и липидам, который происходит на второй стадии формирования КПГ, ингибирует пиридоксал-5-фосфат, являющийся активной формой витамина В
. Как показали исследования, в этой роли он более эффективен, чем карнозин и пиридоксамин, блокирует возможность образования сшивок внутри белковой молекулы, а также между разными молекулами белков, жирорастворимый бенфотиамин, обладающий намного большей биодоступностью, чем тиамин (витамин В
).
Применение бенфотиамина нормализует расслабление кровеносных сосудов, улучшает работу почек, способствует улучшению нервной проводимости клеток сердца. Ингибируют процесс образования оснований Шиффа альфа-липоевая кислота и уже упоминавшийся карнозин. Альфа-липоевая кислота также повышает чувствительность к инсулину, особенно в клетках печени и мышц, защищает сетчатку глаз от гликирования, уменьшает экспрессию ядерного фактора NF-KB. Промежуточные продукты гликирования, продукты Амодори могут нейтрализоваться с использованием карнозина, бенфотиамина, сульфорафана, содержащегося в большом количестве в капусте брокколи, которая очень эффективно активирует глиоксалазную систему. Этими же свойствами, но слабее, чем брокколи, обладают метформин, аспирин, глюкозамин сульфат. Определенную роль в уменьшении гликирования играют таурин, рутин, телмисартан, эналаприл, доксициклин, тенилсетам, пеницилламин, аминогуанидин. Как известно, ионы двухвалентной меди и двухвалентного железа катализируют процесс гликирования и, как предполагают некоторые исследователи, отдельные вышеперечисленные вещества способны связывать и нейтрализовывать катализирующее действие этих ионов, уменьшая за счет этого уровень гликирования. Степень образования КПГ можно снизить за счет ограничительной диеты, уменьшающей частоту соединений глюкозы с белками и дополнительным эффектом которой является повышение активности автофагии, приводящей к изъятию из клеток поврежденных белков и обновлению клеточных структур.
Как говорилось выше, процесс гликирования активизируется с возникновения резистентности к инсулину. Инсулинорезистентность во многом обусловлена невозможностью поддерживать стабильный уровень сахара в крови. Когда уровень сахара находится в равновесии, ощущается избыток энергии, улучшается память, концентрация внимания, уменьшается риск заболеваний, обусловленных высоким уровнем сахара, уходят тревоги и депрессия. Таким образом, способность удерживать стабильный уровень сахара в крови является важнейшим условием сохранения здоровья. По оценкам специалистов, каждый третий человек не способен поддерживать оптимальный уровень сахара в крови. В результате возникают головные боли, раздражительность, постоянная усталость, нервозность, низкая концентрация – все это симптомы низкого уровня сахара в крови. Лучший способ добиться стабильного уровня сахара в крови – контроль гликемической нагрузки принимаемой пищи. Понятие «гликемическая нагрузка» (ГН) является интегральным, включающим в себя гликемический индекс продукта и количество потребляемого продукта. Гликемический индекс характеризует скорость усвоения углевода по сравнению с чистой глюкозой, но он никак не отражает количество углеводов, находящихся в пище, и как они влияют на уровень сахара. Именно поэтому гликемическая нагрузка является более информативным показателем для использования с целью поддержания постоянного уровня сахара. Для стабилизации уровня сахара в крови и сохранения веса рекомендуется употреблять не более 60 ГН в день, а для снижения – не более 40 ГН. Ниже для ориентации приведен перечень продуктов с их гликемической нагрузкой[5 - Холфорд П. Программа «Здоровье на 100 %». М., 2012. 400 с.].
При употреблении в пищу быстрых углеводов (кондитерских изделий в виде пирожных, тортов, круассанов и т. д.) уровень сахара резко поднимается. Одна из задач инсулина – удалить из крови его избыток. Часть быстрых углеводов, превратившись в глюкозу и попадая внутрь клеток в митохондрии, продуцирует энергию. Но весь избыток глюкозы превращается в печени в жир. Часть жира остается в печени, и возникает состояние, называемое жировым гепатозом. Чем выше и дольше сохраняется пик концентрации глюкозы в крови, тем больше вероятность гликирования. При инсулинорезистентности уровень сахара в крови очень долго находится на высоком уровне, а затем так же долго держится на низком, при этом возникает ощущение усталости и голода. Дело в том, что при хроническом повышении уровня инсулина тот препятствует преобразованию накопленного в связи с избытком глюкозы жира в жирные кислоты, которые можно было бы использовать для увеличения энергии. Невозможность воспользоваться этими значительными энергозапасами приводит к тому, что между приемами пищи, когда уровень сахара в крови находится на низком уровне, возникает ощущение усталости и голода. Чтобы избежать этих проблем, необходимо использовать низкогликемическую диету, принимать пищу часто и понемногу, сочетать углеводы с белком, что уменьшает действие углеводов на уровень сахара и снижает гликемическую нагрузку. При таком подходе к питанию можно добиться равномерного уровня доставки глюкозы в клетки с целью выработки энергии.
Однако митохондриям для эффективной выработки энергии из глюкозы нужны вспомогательные питательные вещества. Этими веществами являются магний, витамины группы В, витамин С и хром. Все данные вещества оказывают содействие организму, превращая пищу в энергию и значительно повышая КПД этого превращения. Некоторые из них (например, хром) необходимы для стабилизации уровня сахара в крови. Вообще, инсулин не может действовать без хрома: чем больше вырабатывается инсулина в ответ на увеличение сахара в крови, тем больше расходуется хром. При употреблении обильной пищи с большим количеством «быстрых» углеводов через некоторое время наступает не только усталость, но и происходит набор дополнительного веса, так как избыток глюкозы откладывается в виде жира. Добавки хрома содействуют стабилизации уровня сахара в крови и снижению веса. При сахарном диабете рекомендуют принимать ежедневно хром – 500 мкг и больше, а при борьбе с лишним весом – 200–400 мкг. Надо отметить, что витамин С также поддерживает уровень сахара в крови и уменьшает риск диабета.
Определяют степень гликирования на основе измерения уровня гликированного гемоглобина. Желательно, чтобы его значение находилось в диапазоне 4–5,5 % (некоторые определяют верхнюю границу нормы на уровне 6 %). При результате между 5,7 и 6,5, по всей видимости, имеет место определенная стадия резистентности к инсулину (некоторые трактуют этот диапазон как пограничное значение). Если результат оказывается между 8 и 11 %, это свидетельствует о наличии сахарного диабета II типа. Определенную информацию о степени гликирования можно получить также по анализу фруктозамина: нормальные значения фруктозамина находятся в диапазоне 205–285 мкмоль/л.
На основе последних научных достижений можно сделать вывод, что процесс гликирования является ключевым пусковым механизмом большинства возрастзависимых заболеваний и процесса старения в целом. Именно поэтому необходимо своевременно принимать меры для его максимальной нейтрализации и уменьшения накопления конечных продуктов гликирования.
Жировой обмен