Несложно представить себе систему, состоящую из многих взаимодействующих (движущихся в разных направлениях) тел, даже такую большую, как вся Вселенная, в которой моменты взаимодействующих между собой тел взаимно погашаются и их сумма равна нулю.
Как видим, и в законе сохранения количества движения, и в законе сохранения заряда константы равны нулю. Нет оснований думать, будто с законом сохранения энергии дело обстоит иначе. Во всяком случае, это должно быть справедливо в отношении свободной энергии, частными случаями которой являются энергия движения (кинетическая энергия) и электрическая энергия (энергия электрического поля, создаваемого зарядами). Это дает нам право предположить, что общее количество свободной энергии в изолированной системе равно нулю. Потому это количество и постоянно. Похоже, это единственное приемлемое решение для величины энергетической константы Вселенной.
Первое начало термодинамики
Давайте еще немного углубимся в физику, точнее в науку о движении теплоты – термодинамику. Несмотря на скучное название, эта наука удивительно интересная. Она на многое открывает глаза. Взять хотя бы тот факт, что на основании законов термодинамики была точно установлена невозможность создания perpetuum mobile – вечного двигателя, над которым ломали головы многие поколения энтузиастов[29 - В 1775 году Парижская академия наук приняла решения не рассматривать заявки на патентование вечного двигателя из-за очевидной невозможности его создания.].
Термодинамика изучает превращения энергии в различных явлениях, сопровождающихся тепловыми эффектами. А надо сказать, что тепловая форма энергии является базовой по отношению к другим – практически при любом переходе энергии из одного вида в другой некоторая часть энергии (порой – довольно значительная) выделяется в виде теплоты. Например, когда мы превращаем электрическую энергию в световую (включаем электролампочку), эта лампочка кроме света выделяет также и довольно много тепла, даже если это нам не требуется. Когда мы ту же электрическую энергию превращаем в механическую, например, пользуемся электрической дрелью, то двигатель дрели ощутимо нагревается, что приводит к его ускоренному износу. Но поделать с этим ничего нельзя. Даже создание холода в холодильнике не обходится без выброса в атмосферу тепла.
Тепловая энергия – универсальный вид энергии. Любой вид энергии в конечном счете превращается в тепло. Поэтому термодинамика и представляет для нас такой интерес.
Термодинамика основывается на опытных законах, которые называют началами термодинамики.
Первое начало термодинамики описывает тот очевидный факт, что при наличии разности потенциалов (энергетических уровней) энергия всегда перемещается в направлении от более высокого уровня к более низкому, от избытка к недостатку. Представьте себе водопад – резкий перепад уровня воды. В какую сторону течет вода? Конечно, с высокого уровня – на более низкий. При этом она совершает работу, которую можно использовать, например, заставив её крутить лопасти турбины и вырабатывать ток, на чём, собственно, основана идея любой гидроэлектростанции. Может ли вода двигаться в обратном направлении, снизу вверх? Конечно, не может.
Ну, это вода. Может быть, тепло ведет себя по-другому? Возьмем два предмета, имеющих различную температуру, например, горячий чай (температура 80 °С) и обычную чашку (температура комнатная, 20°С) и приведем их в соприкосновение, т. е. нальем чай в чашку. Что будет происходить? Через какое-то время мы заметим, что чай остыл, так что его можно пить, а чашка нагрелась. Очевидно, часть тепла перешла от чая к чашке. Могло ли быть по другому? Могла ли часть тепла, имевшаяся у чашки (все-таки 20 °С!) перейти к чаю, так, чтобы он вскипел, а чашка бы при этом охладилась до нуля? Нет, это уже похоже на фантастику. Тепло, как и вода, переходит всегда от более нагретого тела к менее нагретому, то есть с более высокого уровня на более низкий, и никогда иначе.
Вот этот простой факт и демонстрирует действие первого начала термодинамики. Любой вид энергии (не только теплота) всегда переходит с более высокого уровня на более низкий. И скорость этого перехода тем больше, чем больше разница уровней (разность потенциалов). Очевидно, что поток воды Ниагарского водопада низвергается гораздо быстрее, чем, скажем, «течет река Волга – издалека долго». Если в процессе энергообмена разность потенциалов имеет возможность выравниваться, то скорость движения потока энергии постепенно снижается, до тех пор, пока оба уровня не уравновесятся. Тогда поток энергии прекратится и система не сможет больше производить работу. Система в этом случае перейдет в равновесное состояние, характеризующееся нулевой энергией. В нашем примере с чашкой чая это произойдет тогда, когда температура нагретой чашки сравняется с температурой остывшего чая; например, равновесие может быть достигнуто на уровне 50 °С.
Обладает ли наша система, достигшая такого равновесия, какой-нибудь энергией?
Вроде бы, не обладает, потому что поток энергии прекратился и никакая работа больше не совершается (в данном случае работа заключалась в нагреве чашки или в остывании чая). Но как же так, ведь 50 °С – это тоже энергия? А это зависит от того, какую систему рассматривать. Если в качестве замкнутой рассматривать систему «чашка-чай», то для неё не имеет значения, какую температуру имеют оба компонента, важно, что эта температура одинакова. Свободная энергия такой системы равна нулю. Если же включить в систему также и комнату, в которой находится чашка (предположим, что температура в комнате 20 °С), то в этой системе наша чашка с чаем, конечно, будет обладать энергией. До тех пор, пока не остынет до комнатной температуры. И тогда в системе «комната-чашка с чаем» тоже наступит равновесие и свободная энергия системы опять примет нулевое значение. Продолжая расширять границы нашей системы, мы придем к тому, что рано или поздно равновесие должно наступить в пределах всей Вселенной, и что её свободная энергия будет равна нулю.
Второе начало термодинамики
Незнание второго начала термодинамики равносильно незнанию произведений В. Шекспира.
Чарльз Сноу
Пусть общее количество энергии во Вселенной равно нулю, – возразят нам, – но ведь это как бы усредненное значение. При этом энергия отдельных объектов во Вселенной может отличаться от нуля и сильно отличаться – как в положительную, так и в отрицательную сторону. Не получится ли у нас как в том анекдоте, когда дежурная медсестра заверяла главврача, что во время ее дежурства все было хорошо, средняя температура больных – 36 °С.
– А как вы определяли среднюю температуру? – поинтересовался главврач.
– У половины больных температура 42 °С – у них жар, а у второй половины 30 °С, поскольку они уже померли. А в среднем – 36 °С.
Суть вопроса заключается вот в чём: могут ли внутри системы, в целом обладающей нулевой энергией, сами собой, без какого бы то ни было внешнего воздействия, возникнуть разности потенциалов, позволяющие ей совершать некоторую работу?
Для наглядности рассмотрим два простых примера.
Предположим, у нас есть система, состоящая из двух сообщающихся сосудов, в которые налита вода. Уровни воды в обоих сосудах одинаковы – так всегда бывает в сообщающихся сосудах. Возможно ли, что бы уровни воды в сосудах сами собой вдруг изменились?
Теперь возьмем более простую систему, состоящую из одного сосуда с водой. Плотность воды в каждом месте сосуда одинакова, приблизительно 1 г/см
. Возможно ли, чтобы без всякого внешнего воздействия в каком-то месте сосуда вода вдруг приобрела большую (или меньшую) плотность? Например, в одном месте сосуда плотность воды стала бы 1,2 г/см
а в другом – 0,8 г/см
?
Ответ представляется очевидным. Конечно, ни то, ни другое – невозможно!
Однако не торопитесь с выводами.
Правильный ответ, – говорит нам наука, – такой: уровень воды самопроизвольно подниматься, конечно, не может, а вот плотность её увеличиться без постороннего вмешательства – пожалуйста!
Да в чем же разница? – спросите вы, – и почему никто никогда такого явления не наблюдал?
А разница между двумя рассмотренными нами случаями в том, что переход на более высокий уровень запрещает Первое начало термодинамики, имеющее безусловный характер, тогда как внутренними свойствами вещества ведает Второе начало термодинамики, которое носит вероятностный характер. Объясняется это довольно просто. Первое начало имеет дело с макрообъектом, в данном случае – с жидкостью, поведение которой предсказуемо, и мы точно знаем, чего можно от нее ожидать, а чего нельзя. А Второе начало определяет поведение частиц, составляющих вещество, предсказать поведение каждой из которых в принципе невозможно – мы можем говорить лишь о вероятности того, где каждая из этих частиц окажется в тот или иной момент времени. Поэтому, не запрещая, вроде бы, самопроизвольно менять плотность жидкости, Второе начало лишь замечает, что вероятность такого события исчезающее мала. То есть, в принципе такое событие могло бы иметь место, однако вряд ли такое случится на самом деле. Сильная вещь – наука!
Обычно, когда речь заходит о Втором начале термодинамики, приводят другой пример. Представьте себе замкнутую систему, состоящую из двух сосудов, соединенных трубкой. Сосуды заполнены каким-нибудь газом, да хоть обычным воздухом, который, само собой, равномерно распределяется по всему предоставленному ему объему. Как сделать так, чтобы в одном сосуде воздух нагрелся, а в другом охладился? Вспомним, что температура тела (и газа тоже) определяется интенсивностью колебаний составляющих его частиц. Чем быстрее движутся частицы, тем выше температура (и ниже плотность). При любой исходной температуре в газе имеются частицы, колеблющиеся с разной скоростью. Вот если бы мы могли разделить их: медленные – налево, быстрые – направо – тогда бы между сосудами возникла разница температур. Но как это сделать?
Наука убеждает нас: если сидеть у таких сосудов очень долго, очень-очень долго, века, тысячелетия, миллионы, а может быть и миллиарды лет, или еще дольше, то однажды произойдет чудо, и все быстрые частицы соберутся в одном сосуде, а медленные – в другом.
Можно этому верить, можно нет.
Вот, у Максвелла, например, не хватило терпения: он предложил на трубке, соединяющей сосуды, установить кран и посадить у крана демона, который бы в одну сторону пропускал только быстрые частицы, а в другую – только медленные. Этот неутомимый демон вошел в учебники под названием «демон Максвелла».
Но в жизни таких демонов не бывает, а потому и самопроизвольного возникновения разности потенциалов в замкнутой системе не бывает тоже.
На практике Второе начало термодинамики означает, что равномерное, равновесное состояние Вселенной является наиболее вероятным, и поэтому она всегда, в любой момент времени, стремится именно к такому состоянию, что сопровождается неуклонным возрастанием энтропии.
Это явление выражает закон возрастания энтропии, который можно сформулировать следующим образом: «В изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс».
По существу это утверждение является ещё одной формулировкой Второго начала термодинамики.
Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.
А когда такое равновесие наступило, выйти из него (перейти в неравновесное состояние) система самостоятельно уже не может.
Согласно Второму началу термодинамики, для того, чтобы вывести Вселенную из равновесного состояния, её необходимо «раскачать», а для этого на неё должно быть оказано некоторое внешнее воздействие. Иначе говоря, процессы, происходящие во Вселенной, необъяснимы в рамках самой Вселенной, и для того, чтобы их объяснить, надо выйти за эти рамки!
Таким образом, физика, в лице термодинамики, привела нас к следующему парадоксальному выводу: если в системе, которую мы полагаем замкнутой, вдруг появляются какие-то энергетические аномалии (неравномерности), приводящие к убыванию энтропии, то причину этих аномалий с большей вероятностью следует искать не внутри системы, а вовне. Применительно к Вселенной этот вывод можно сформулировать так: хотя Вселенная является абсолютно замкнутой (в физическом смысле) системой, на самом деле должно быть нечто, что существует за ее пределами и способно оказывать на нее воздействие.
Большой взрыв
Хотя в физике, по старой материалистической привычке, считается хорошим тоном придерживаться представления о вечной, не возникшей Вселенной, из открытых физиками законов вытекает, как мы убедились выше, совершенно обратное.
Теперь от физики перейдем к астрономии. Нас интересует: можно ли из наблюдений астрономов за окружающим нас космическим пространством сделать вывод о конечности или бесконечности Вселенной?
Астрономы подошли к проблеме таким образом. Если Вселенная вечна, рассуждали они, то она должна быть бесконечной в пространстве, не должна иметь ни границ, ни центра. И тогда к ней неприменимы такие понятия, как расширение или сжатие. Если же она конечна, т. е. временна, то, наоборот, должна находиться в динамическом состоянии – либо сжиматься, либо расширяться, либо сжиматься и расширяться попеременно.
Остается только понаблюдать: пребывает ли Вселенная в неизменности, или же ее состояние меняется в ту или иную сторону?
Что же показали наблюдения?
В 1929 году американский астроном Э. Хаббл опубликовал статью «Связь между расстоянием и лучевой скоростью внегалактических туманностей», в которой сделал такой вывод: «Далекие галактики уходят от нас со скоростью, пропорциональной удаленности от нас. Чем дальше галактика, тем больше ее скорость». Коэффициент пропорциональности получил название «параметра Хаббла». Значение «параметра Хаббла» определяет время, истекшее с начала расширения Вселенной, которое сейчас оценивается в 13,7 ± 0,13 млрд. лет. Такой вывод получен на основе эмпирически установленного физического эффекта – красного смещения, т. е. смещения длин волн в спектрах галактик в сторону красной части спектра по сравнению с эталонными спектрами. Это явление обусловлено эффектом Допплера[30 - Эффе?кт До?плера – изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Эффект назван в честь австрийского физика К. Допплера.]. Открытие Хабблом разбегания галактик лежит в основе концепции расширяющейся Вселенной.
Итак, астрономические наблюдения показывают: Вселенная расширяется.