Оценить:
 Рейтинг: 0

Кости: внутри и снаружи

Год написания книги
2021
1 2 3 >>
На страницу:
1 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
Кости: внутри и снаружи
Рой Милз

МИФ Здоровый образ жизниТело. Инструкция
Эта книга – живой иллюстрированный рассказ о костях, краеугольном камне для понимания здоровья и человеческой культуры. Хирург-ортопед Рой Милз не только объясняет биологический состав и структуру костей, показывает, как они растут, ломаются и заживают, но и знакомит читателей с медицинскими инновациями в области ортопедии. Помимо этого, он прославляет кость в нашей истории и демонстрирует множество ролей, которые кости играли в жизни человечества на протяжении тысячелетий.

Книга подготовлена в информационных целях. Перед применением приведенных рекомендаций обязательно проконсультируйтесь с врачом.

На русском языке публикуется впервые.

Рой Милз

Кости. Внутри и снаружи

Оригинальное название: Bones: Inside and Out

Научные редакторы Вера Гулюкина, Константин Рыбаков, Мария Меньшикова

Издано с разрешения автора и The Van Lear Agency LLC c/o Agentstvo Van Lear LLC in conjunction with MacKenzie Wolf

Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав

© Roy Meals, 2020

First published in the United States in 2020 by W.W. Norton and Company. Translation rights arranged by The Van Lear Agency LLC and MacKenzie Wolf. All rights reserved

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2021

* * *

Посвящается Сьюзан, любовь, поддержка, безупречный вкус и добрые наставления которой делают мои книги и мою жизнь намного богаче

Введение

Давайте подумаем, какие недостатки имеются у популярных строительных материалов. Глина растекается, а после высыхания крошится. Известняк, гранит, бетон, кирпич и фарфор твердые, но хрупкие, а еще массивные, поэтому использовать их можно не везде, особенно когда надо сделать что-то подвижное. Металл годится для легких конструкций и пружинит, если его немного согнуть, – это хорошее качество. Однако если согнуть металл чуть сильнее, он останется в таком состоянии – и это не всегда плюс. Пластик вреден для окружающей среды. Дерево – прекрасный эластичный материал, легкий, биоразлагаемый. Деревянные детали легко соединять друг с другом. Тем не менее и у дерева есть недостатки: оно гниет и горит.

Материалы, которые используют живые организмы, тоже не идеальны. Раковины тяжелы, поэтому улитки и двустворчатые моллюски не могут быстро передвигаться. Ракообразные более подвижны, а жуки даже умеют летать, но их тонкий, легкий и хрупкий наружный скелет необходимо периодически сбрасывать, иначе его обладатель не будет расти.

Все это подводит нас к мысли о кости. Во-первых, кость «производится» прямо на месте эксплуатации (в организме живого существа). Во-вторых, она легкая, прочная и адаптируется к меняющимся условиям. Стальной мост не может удвоить свою длину или несущую способность, а кость и растет, и реагирует на нагрузки. Более того, кость сама себя чинит: ни разбитый кирпич, ни сломанная ложка из металла, пластика или дерева не обладают таким свойством. Кость – это не только лучший в мире конструкционный материал, но и большой банк, который вмещает жизненно важные элементы (в первую очередь кальций) и при необходимости отдает их организму.

При всем уважении к этому чуду природы мало кто видел (или хотел бы увидеть) живые кости – особенно собственные. Наделенные столь превосходными качествами, кости живут уединенно и не получают должного внимания. Какой образ возникает у вас в голове при мысли о кости? Картина Джорджии О’Кифф[1 - Джорджия О’Кифф (1887-1986) – американская художница, мастер магического реализма. Среди типичных мотивов О’Кифф – сельские дома, горы, скалы и дюны, источенные стихиями кости и черепа животных, а также цветы. Здесь и далее, если не указано иное, примечания редактора.], на которой изображен коровий череп под палящим солнцем? Выбеленный, иссушенный, неподвластный времени череп посреди пустыни – такая ассоциация вовсе не подчеркивает достоинства этого материала. Мы испытываем раздражение и даже некое презрение к кости, когда снимаем последний кусочек мяса с бараньего ребрышка или говяжьего стейка. Мы торопимся приступить к десерту, даже не замечая костное кольцо в центре куска свинины, и не задумываемся, для чего у куриной ножки на концах имеются расширения и почему некоторые рыбьи кости гибкие, а птичья вилочка такая хрупкая. Скептики, которые все еще не верят, что кость – лучший в мире материал, спросят: «Если кости такие расчудесные, почему же улитки и пчелы обходятся без них?» Я отвечу на эти и многие другие вопросы в своей книге по мере того, как мы будем знакомиться с историей кости.

Кость – широко распространенный и универсальный материал, однако живую кость мы видим редко, поэтому она кажется нам несколько загадочной. Зато когда кость отслужит своему владельцу, этот удивительный и таинственный материал получает шанс проявить себя в самых разных местах и предназначениях, иногда спустя сотни миллионов лет. Кость может многое рассказать нам об истории планеты и жизни животных на ней. Еще на заре цивилизации люди начали применять кость как орудие труда, использовать ее для защиты и даже для развлечения и вдохновения. Таким образом, обнаженная кость не менее интересна, чем скрытая, и к концу этого повествования вы будете уверены, что лучшего материала в мире не найти.

Часть первая. Скрытая кость

Глава 1. Уникальный состав кости и ее структура

Выдающийся греческий врач и философ Гален писал, что кость, судя по ее бледному цвету, сделана из семенной жидкости. Почти тысячу лет спустя Авиценна, персидский астроном, врач и автор множества научных трудов, пришел к выводу, что кость сотворена из земли, ведь она холодная и сухая. С тех времен миновала еще тысяча лет, и теперь в обществе преобладает иное мнение. Однако Авиценна заметил: чтобы понять скелет, лучше всего отделить его от остального тела. Именно так мы сейчас и поступаем.

Чтобы поближе познакомиться с костью, разложим ее вплоть до химических составляющих. Когда пять атомов углерода соединяются с двумя атомами кислорода, одним атомом азота и несколькими атомами водорода, образуется аминокислота пролин. Аминокислоты – незаменимые кирпичики жизни. Пролин синтезируется в организме человека, а также выделяется при расщеплении пищи в процессе ее переваривания. Из богатой пролином смеси аминокислот особые клетки собирают цепочки молекул коллагена – самого распространенного белка нашего организма. Сначала нить коллагена напоминает микроскопическую мягкую макаронину. Затем к молекулам пролина присоединяются дополнительные атомы водорода и кислорода. Из-за этого цепочка приобретает множественные резкие изгибы, и теперь «спагетти» выглядит как крохотная спиралька. Три такие молекулы группируются в одну молекулу коллагена. Даже на этом субмикроскопическом уровне молекула получается стабильная и прочная, поскольку гребни одной цепочки отлично подходят к впадинкам на других.

Синтезом молекул коллагена занимаются несколько видов клеток, в том числе остеобласты – клетки, которые образуют кость (название происходит от греческих слов «кость» и «росток»). Остеобласт выталкивает готовую молекулу коллагена – это чудо химии и механики – за пределы своей мембраны в узкое межклеточное пространство. Там молекулы коллагена соединяются друг с другом своими концами, а также по всей длине, образуя из множества нитей единое волокно. Молекулы коллагена такие тонкие, что, если каждую секунду класть их одна на другую, потребуется семнадцать часов, чтобы сделать стопку толщиной с эту страницу. И хотя в длину они гораздо больше, придется состыковать целых триста тысяч молекул коллагена, чтобы пересечь пространство внутри этой буквы «о».

Коллагеновые волокна сцеплены между собой и механическими (гребень – впадинка), и химическими связями (как липкие макароны). Чтобы оценить их прочность, представьте три ряда из кубиков лего, соединенных и склеенных суперклеем. Не пытайтесь их разорвать: эти аминокислотные цепочки прочнее, чем стальные нити такой же толщины.

Пока что это вся химия, которая нам нужна. Попробуем найти связь между английскими моряками, кожей для обуви, мебельным клеем и сладким желе. Помните водородно-кислородные добавки к молекулам пролина? Катализатором их присоединения выступает витамин C. Эти добавки необходимы для скручивания молекул в плотную спираль, вот почему дефицит витамина C ведет к нарушению выработки коллагена и вызывает цингу – болезнь, при которой кровоточат десны и возникают многочисленные кровоизлияния в органах и тканях. Раньше моряки месяцами находились в море, в их рационе почти не было свежих овощей и фруктов. Чтобы улучшить вкус тухлой питьевой воды, английские моряки начали добавлять в нее сок цитрусовых. В результате выработка коллагена возвращалась в норму – так, благодаря счастливой случайности, обнаружилось, что не только одно яблоко в день прогоняет докторов, но и один лайм не подпускает цингу.

Обувная кожа – еще одно воплощение коллагена. В процессе дубления кожи в чаны добавляют специальные химические вещества, которые повышают число связей между коллагеновыми волокнами коровьих шкур, поэтому кожа приобретает прочность. Что же касается шариков для пейнтбола, капсул с лекарствами, мебельного клея, желатиновых десертов и жевательных мишек, здесь другая история: все это делается из частично разрушенных волокон коллагена, которые получают путем вываривания побочных продуктов производства мяса и кожи. Существует даже поговорка «Отправить лошадь на клеевую фабрику» – так говорят о стареющих животных, поэтому лучше не читайте про производство желатина перед тем, как съесть кусочек зефира.

Коллаген устойчив к растяжению. Этот белок составляет основу сухожилий (они преобразуют мышечные сокращения в движения суставов) и связок (они удерживают суставы в правильном положении). Представьте, что вы встали на цыпочки. Если бы ахилловы сухожилия были чрезмерно эластичными, при сокращении икроножных мышц они растягивались бы как резинка, и пятки оставались бы на земле. Это плохо – вы не смогли бы прыгать. Или представьте, что вы подпираете рукой щеку и начинаете отгибать назад кончики пальцев. Если бы не прочные связки, ногти в конце концов коснулись бы тыльной стороны ладони – не самое приятное зрелище. Бывает, что связки очень растяжимы от природы. Такие «гуттаперчевые» люди, или «люди-змеи», иногда любят хвастаться своими способностями, вызывая у окружающих недоумение.

Кажется, что такое описание коллагена не имеет отношения к делу, ведь он прочный и не растягивается, да и кость, как мы знаем, тоже твердая. Кость сопротивляется сжатию (выражаясь научным языком), поскольку содержит кристаллы кальция, однако эти кристаллы находятся – как вы уже догадались – в сети коллагена. Конструкция напоминает покрытый штукатуркой деревянный каркас стены.

Чтобы в этом убедиться, купите упаковку куриных голеней. С пары куриных ножек снимите мясо, а кости положите на несколько недель в уксус. Мясо приготовьте на ужин, а кости, оставшиеся после трапезы, отправьте на два часа в духовку, разогретую до 120 ?С. Кости, замоченные в уксусе, станут гибкими, как резина, поскольку уксус растворяет кальций. Кости из духовки окажутся хрупкими и ломкими, как мел, потому что высокая температура разрушает коллагеновые волокна.

Вымоченная в уксусе куриная кость потеряла жесткость, которую ей обеспечивали кристаллы кальция. Остался только гибкий коллагеновый каркас

В книгах по химии написано, что существуют разные виды кристаллов кальция: хлорид кальция (противогололедное средство), цитрат кальция (умягчитель воды и пищевая добавка), карбонат кальция (таблетки от изжоги, мел, кораллы, яичная скорлупа), сульфат кальция (гипс и алебастр) и гидроксид кальция (гашеная известь). Если при соответствующих условиях добавить к гидроксиду кальция фосфорное соединение, получится гидроксиапатит. Возможно, это новое для вас слово. Оно никак не связано ни с гидрой, ни с аппетитом (даже в случае зефира и других желатиновых вкусностей). Гидроксиапатит – это основной кальциевый кристалл костей. Если произнести это слово на вечеринке, можно показаться слегка ненормальным, однако именно благодаря гидроксиапатиту мы способны ходить на двух ногах, так что давайте поговорим об этом минерале.

В 1780-х годах один немецкий минералог выделил кристаллы апатита в отдельный вид – прежде их путали с другими минералами или каждый раз признавали новым видом. За такую обманчивую природу он и дал им название: немецкое apatit происходит от греческого «обман». Это вещество существует в различных формах, а его соединение с ионом воды дает гидроксиапатит.

Полезно знать, особенно если вы следите за своим весом, что кости составляют около пятнадцати процентов массы нашего тела. Примерно треть этого приходится на коллаген, а две трети – на соединения кальция и фосфора. Таким образом, у человека, вес которого составляет восемьдесят килограммов, двенадцать килограммов костей, из них четыре килограмма коллагена и восемь килограммов гидроксиапатита – хватит, чтобы набить чемодан на колесиках (эта информация просто дает представление о костной массе человека, так что не пытайтесь проскользнуть с такой тележкой мимо охраны в аэропорту).

Представьте, что остеобласты плавают в форме для выпечки, наполненной питательным бульоном из воды и кислорода. Следуя своей генетической программе, они будут производить и выделять молекулы коллагена и гидроксиапатита, и – вуаля – кристаллы кальция отложатся в коллагеновой сети: так получается кость. В сущности, остеобласты замуровывают себя в костном коконе и превращаются в остеоциты – зрелые клетки костной ткани, которые поддерживают структуру кости, но не слишком активно участвуют в ее дальнейшем строительстве и разрушении. На усердие остеобластов влияют различные сигнальные молекулы (посредники), в основном гормоны гипофиза, щитовидной железы, половых желез (семенников и яичников). Близлежащие клетки тоже вырабатывают сигнальные молекулы, состоящие из аминокислотных цепочек. Эти вещества называют факторами роста: они могут подстегнуть остеобласты, чтобы те начали ускоренно наращивать кость, и при необходимости даже превращают некоторые другие виды клеток в клетки, формирующие костную ткань.

Когда остеобласты сделали свое дело и окружили себя коконами укрепленного коллагеном гидроксиапатита, питательный бульон в форме для выпечки становится очень твердым. По плотности и прочности он почти такой же, как кирпич-сырец. Но разве можно представить, как наши предки удирают от львов, имея кирпичные кости? А если бы у преследователей кости тоже были из схожего материала? Это была бы скучная погоня, как в замедленном кино. Конечно, эволюция выглядела совсем не так. Чтобы понять, как все происходило на самом деле, надо познакомиться с некоторыми принципами механики. Они объясняют, почему большинство плоских костей (например, череп и грудина) состоят из двух слоев компактной костной ткани, между которыми, как в сэндвиче, расположена губчатая сердцевина, а также почему длинные кости рук и ног цилиндрические, как трубки велосипедной рамы.

Давайте рассмотрим тонкие плоские кости: это кости черепа, который защищает головной мозг, а также грудина и ребра, которые закрывают сердце и легкие от прямых ударов. Внутренняя и внешняя поверхность этих костей твердая, плотная и гладкая, устойчивая к сгибанию и прокалыванию. Внутри эти кости пористые, как замороженная губка или гофрированный картон: вещество там легкое, но жесткое, оно и придает костной ткани прочность.

Теперь обратимся к трубчатым костям. Чтобы оценить изящность их структуры, нарисуйте в своем воображении трехметровую деревянную доску шириной сорок пять сантиметров и толщиной пять сантиметров. Такую доску можно перебросить через пропасть шириной два с половиной метра и благополучно перейти на другую сторону ущелья – возможно, доска будет немного пружинить, но ничего страшного. Чтобы убрать пружинистость, доску можно поставить на бок и перейти на цыпочках по пятисантиметровой грани: мостик получится намного уже, зато гораздо жестче. Размеры и физические свойства доски не изменились, однако во втором случае толщина вертикального слоя дерева составит целых сорок пять сантиметров (а не пять, как в первом примере), что уменьшает прогиб.

Именно поэтому лаги пола (поперечные балки) в деревянных каркасных домах ставят на ребро – иначе пол пружинил бы, как трамплин. Конечно, можно взять очень толстые доски и положить их плашмя, но тогда пол выйдет настолько тяжелым и дорогим, что проект рухнет и в физическом, и в финансовом смысле.

Как инженеры добиваются максимальной эффективности от работы балок и перекладин каркаса? Иначе говоря, как получить максимальную отдачу при минимальном расходе ресурсов и с наименьшими усилиями? Для этого применяют двутавровые балки – если посмотреть на них с торца, они выглядят как заглавная буква I. Мы не будем углубляться в объяснение принципа их действия с формулами и греческими буквами, ограничимся безболезненным обзором. Наибольший вклад в жесткость балки вносят части, расположенные рядом с боковыми гранями: можно убрать часть материала с верхней и нижней поверхности обычной балки прямоугольного сечения, при этом прочность балки сохранится, а ее масса и стоимость снизятся.

Двутавровая балка хорошо сопротивляется изгибающему моменту под действием сил, направленных сверху вниз. Плохо то, что она не слишком устойчива, если силы скручивающие или боковые. Чтобы выдержать и вертикальное, и горизонтальное воздействие, балка должна напоминать нечто вроде тонкого железного креста. Однако если силу приложить под углом (например, два, пять, восемь или одиннадцать часов на условном циферблате), даже такая балка будет недостаточно прочной.

Конструкция, способная противостоять воздействию сил, направленных с разных сторон, получается из множества двутавровых балок, расположенных по кругу. Если соединить их наружные части, середину можно вообще убрать без особой потери прочности. Что останется? Цилиндр. Он устойчив к скручиванию и сгибанию во всех направлениях. Полая сердцевина позволяет облегчить конструкцию и сэкономить материал: сплошной стержень аналогичного размера был бы ненамного жестче. В этом и заключается изящество велосипедных рам, лыжных палок и – как вы уже догадались – костей. Наши длинные трубчатые кости, в сущности, представляют собой полые трубки, легкие и устойчивые к изгибам со всех сторон.

Все эти элементы содержат одинаковое количество материала при условии, что они имеют одинаковую длину. Плоская балка (a) пружинит под действием вертикально приложенных сил. Если поставить ее на ребро (b), сопротивление изгибающему моменту в вертикальной плоскости повысится. Двутавровая балка (c) еще прочнее в этом отношении. Воображаемый крест из двутавровых балок (d) устойчив к сгибанию в вертикальном и горизонтальном направлении, а фигура из множества двутавровых балок (e) будет эффективно противостоять силам, действующим в самых разных направлениях. Цилиндр (f) выдерживает сгибание с любой стороны и напоминает строение кости

Обратите внимание, что концы большинства трубчатых костей расширены и покрыты хрящом – еще одной соединительной тканью, состоящей из крупных молекул, рассеянных по коллагеновой сети. В костной ткани «штукатурка» представляет собой твердые, сопротивляющиеся сжатию кристаллы гидроксиапатита. Связующие молекулы хрящевой ткани придают ей упругость и удерживают воду. Они напоминают губку и обеспечивают хрящам – а значит, и концам костей в суставе – способность скользить почти без трения.

О строении и функции хрящей я могу рассказать еще одну захватывающую историю, но они подождут своей книги. Нам, поклонникам костей, достаточно знать, что хрящ, по сравнению с компактным веществом кости, мягкий и скользкий. Утолщения на концах длинных трубчатых костей защищают эту нежную соединительную ткань. Во-первых, они увеличивают площадь соприкосновения, тем самым снижая в каждой отдельной точке давление, которое приходится выдерживать хрящу. Во-вторых, в них содержится в основном губчатая костная ткань, которая слегка пружинит и амортизирует чувствительный к давлению хрящ.

Вы, наверное, замечали, что сердцевина твердого, плотного цилиндра трубчатой кости не совсем пустая. Здесь мы подходим к природе и назначению двух типов костной ткани – компактной и губчатой. Кость чем-то похожа на карамельку с шоколадной начинкой или хрустящий французский багет. Внешняя ее поверхность твердая и устойчивая к механическому воздействию, что позволяет нам поднимать тяжести. Пористое содержимое центральной полости – губчатое вещество – немного повышает прочность кости и поддерживает поверхностный слой, особенно ближе к концам.

Полости губчатой костной ткани заполнены клетками костного мозга, который тоже бывает двух видов: красный и желтый.

1 2 3 >>
На страницу:
1 из 3

Другие аудиокниги автора Рой Милз