Оценить:
 Рейтинг: 4.6

Transcend

Год написания книги
2015
<< 1 2 3 4 5 >>
На страницу:
4 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

Наше старение обусловлено множеством процессов. Некоторые из них отличаются простотой, например истощение запасов фосфатидилхолина – жизненно важного вещества в мембранах наших клеток. (Этот процесс можно повернуть вспять, принимая специальные добавки, о чем мы расскажем ниже.) Некоторые процессы довольно сложные, например поддержание здоровья самого важного органа тела – мозга. В этой главе мы обсудим его оптимальное здоровье, а также сон, поскольку он жизненно необходим. Потом мы займемся сердцем, системой пищеварения, а также половыми органами и гормонами. Завершит описание работы человеческого тела обсуждение разнообразных метаболических процессов, включая воспаление, метилирование и гликирование. И, наконец, мы поговорим о геномике. Эта новая область науки раскрывает секреты генов, контролирующих и регулирующих нашу физиологию.

Мы мыслим, следовательно – существуем

Вес мозга составляет всего 2 % от общего веса, однако он получает 20 % всей крови, перекачанной сердцем, и потребляет 20 % кислорода и глюкозы, поступающих в организм. Помимо этого 50 % генетической информации приходится на мозг. Иными словами, половина ваших генов описывает строение мозга, в то время как вторая половина определяет строение остальных 98 % органов и тканей вашего тела. Более того, мозг, как дирижер, управляет каждым ударом вашего сердца, каждым взмахом ресниц, выработкой гормонов, не говоря о других, более сознательных действиях. Уже долгое время он рассматривается как вместилище сознания, вашего «я», поэтому имеет смысл разобраться, что можно сделать, чтобы ваш мозг всегда был здоров и счастлив! Оказывается, в этом направлении реально сделать многое. Рассматриваемые в этой главе положения покажут, как серьезно замедлить старение мозга и избежать зачастую катастрофических последствий мозговой дисфункции.

Пожалуй, разум считается самым важным в мире явлением – именно он дает возможность осознавать и изменять окружающую среду. Лучший пример единицы разума – сам человеческий мозг. И его строение не тайна. Несмотря на то что живой мозг скрыт в черепной коробке, всё более точные технологии сканирования позволяют заглянуть внутрь него. Это прекрасная иллюстрация к закону ускорения отдачи вложений, который сформулировал Рэй. Пространственное разрешение устройств для сканирования мозга удваивается каждый год – так же, как и объем ежегодно получаемой информации о мозге.

Сегодня мы знаем, что человеческий мозг состоит из 100 миллиардов нейронов и триллиона вспомогательных глиальных клеток. Раньше считалось, что глиальные клетки обеспечивают только физическую поддержку нейронов, однако последние исследования показали их важную роль в воздействии на синапсы, или контакты между нейронами. Наш мозг насчитывает около 100 триллионов подобных контактов, и по большей части именно они делают нас разумными. Вот такая сложная штука – мозг.

Объем информации о мозге увеличивается в геометрической прогрессии, но способны ли мы разобраться в таком количестве данных? На протяжении тысячелетий со времен Платона человечество мучает вопрос: достаточно ли мы разумны, чтобы познать свой собственный разум. Программист Дуглас Хофштадтер писал, что, «может быть, лишь по воле случая человеческий мозг слишком слаб, чтобы понимать самого себя». Эти слова были написаны в 1979 году, и мы докажем, что дело обстоит не так. По мере сбора достаточной информации о конкретном участке мозга у нас появляется возможность построить его точную математическую модель и имитировать на компьютере его работу. Например, программист Ллойд Уоттс и его коллеги создали компьютерную модель, имитирующую работу дюжины участков слуховой коры мозга. Эти участки отвечают за обработку звуков, которые мы слышим. Восприятие моделью Уоттса сложных психоакустических тестов оказалось очень схожим с восприятием тех же тестов человеческой аудиторией. В Массачусетском технологическом институте работает похожая модель. Она имитирует зрительную кору мозга, обрабатывающую соответствующую информацию.

В Техасском университете (Остин) работает модель мозжечка. Этот важный участок мозга содержит более половины всех нейронов и отвечает за формирование навыков, например способности поймать мяч на лету. Нас всегда удивляло, как, например, десятилетняя девочка справляется с такой задачей: всего за несколько секунд ей нужно решить в уме дюжину дифференциальных уравнений, но дети в этом возрасте еще не знакомы с математическим анализом. Теперь мы понимаем, как это получается. Ее мозжечок действительно решает эти уравнения методом базисных функций. Конечно же, это происходит неосознанно. И для выполнения определенных задач все равно приходится тренировать мозжечок – вот почему в любом деле важна практика. И снова по данным различных тестов работа компьютерной модели мозжечка оказалась схожей с работой настоящего мозжечка, формирующего навыки. Этот пример иллюстрирует популярное мнение, что, хотя наш мозг и способен на некоторые удивительные достижения, мы слабо понимаем, как ему это удается.

В настоящее время IBM ведет многообещающую работу по созданию модели коры головного мозга. Пожалуй, это самая важная часть мозга, она же отвечает за абстрактное мышление. Пока писалась настоящая книга, эта модель успешно прошла первую серию испытаний.

Поскольку темпы развития обратного проектирования ускоряются, понимание механизмов работы мозга поможет нам еще глубже проникнуть в тайны человеческой природы. Именно эту цель преследуют искусство и наука уже более 5000 лет, со времен первых каменных скрижалей. Более того, результаты этого великого конструкторского проекта, над которым сегодня трудятся более 50 000 ученых и инженеров, обеспечат нас методами создания намного более «разумного» компьютерного ПО. Что касается вопросов, затронутых в книге, то этот проект разработает высокоэффективные методы для коррекции нарушений в работе мозга.

А скорректировать нужно действительно многое. Как мы уже отмечали, эволюция дала достаточно времени для взросления и ровно столько лет взрослой жизни, сколько необходимо, чтобы наши дети выросли и стали самостоятельными. Таким образом, естественный отбор отсеял такую важную особенность, как сохранение здоровья мозга людей, которым далеко за 20. С возрастом здоровье нашего мозга увядает, стремительно или постепенно. Мы начинаем страдать от разрушительных вредных привычек, депрессий, тревожных расстройств и многих других нарушений, не говоря уже о возможных катастрофических последствиях ошибочных суждений.

Мы – творцы своего мозга

Возможно, одним из важнейших открытий в области здоровья мозга, связанным с недавними достижениями информационных технологий, может оказаться его нейропластичность. С середины XIX века считалось, что участки мозга жестко запрограммированы на решение конкретных задач, а нервные клетки не восстанавливаются. В 1857 году французский нейрохирург Поль Брока связал определенные когнитивные расстройства с повреждениями конкретных участков мозга в результате несчастного случая или операции. Более столетия считалось, что, в отличие от других частей тела, способных к регенерации, мозг не может восстанавливать утраченные или поврежденные нейроны и связи, а человек непрерывно и безвозвратно теряет мозговое вещество.

Данные новейших исследований в области картирования мозга показали, что мозг человека обладает пластичностью, и это делает его, возможно, самым динамичным и самоорганизующимся органом человеческого тела. Несмотря на то что различным участкам мозга присуща определенная степень специализации навыков, мозг жертвы инсульта зачастую способен перенести обработку навыков из поврежденного участка в неповрежденный. Более того, последние достижения в сканировании позволяют увидеть, как формируются новые нейронные связи, и даже проследить рождение новых нейронов из стволовых клеток в результате мыслительного процесса.

В ходе одного эксперимента в Калифорнийском университете обезьян учили выполнять определенную задачу с помощью одного пальца. Сравнение снимков мозга обезьян до и после эксперимента показало существенное увеличение числа нейронных связей, обусловленное тренировкой этого пальца. Участники эксперимента по обучению игре на скрипке продемонстрировали существенный прирост нейронных связей как результат того, что пальцы левой руки управляли высотой звука. В Рутгерском и Стэнфордском университетах проводился эксперимент по сканированию мозга студентов с дислексией (имеющих трудности с чтением). Испытуемые учились различать близкие по звучанию согласные, такие как «п» и «б». По окончании эксперимента сканирование установило значительный рост и увеличение активности участка мозга испытуемых, отвечающего за возможность различать эти звуки. Пола Таллал, одна из создателей системы обучения, прокомментировала эту информацию так: «Вы создаете свой мозг из того, что получаете».

Последние исследования с использованием сканирования мозга позволяют в режиме реального времени наблюдать, как отдельные межнейронные связи создают новые синапсы (места контактов между нейронами). Таким образом, мы можем увидеть, как мозг создает наши мысли, а мысли, в свою очередь, формируют мозг.

На протяжении столетий значение знаменитого изречения Декарта «Я мыслю – следовательно, я существую» вызывало споры. Но описанные выше открытия предлагают новое объяснение: я действительно создаю свой разум из собственных мыслей.

Главный урок, который несут нам эти открытия, таков: мозг ничем не отличается от мышц: он должен работать, чтобы жить. Всем известно, что происходит с мышцами, когда человек прикован к постели или ведет сидячий образ жизни. То же самое происходит и с мозгом. Без решения требующих умственных усилий задач мозг перестает создавать новые связи, теряя организованность и в конечном счете работоспособность. Как для тела, так и для мозга справедлива и обратная зависимость. Если после длительного перерыва начать регулярно заниматься лечебной физкультурой (ЛФК) и выполнять физические упражнения, за несколько месяцев можно восстановить массу и тонус мышц. То же самое происходит и с мозгом.

Снимки нейронных дендритов in vivo: образование дендритного шипика и синапса

Многие исследования демонстрируют, что люди, всю жизнь занимающиеся умственным трудом, сохраняют живой ум. В ходе канадского лонгитюдинального[4 - Лонгитюдинальное исследование (англ. longitudinal study, longitudinal design) – продолжительное онтогенетическое исследование одних и тех же индивидуумов.] исследования под названием «Виктория» выяснилось, что живость ума сохраняют те пожилые люди, которые регулярно занимаются умственной деятельностью, включая такие повседневные занятия, как чтение книг. И напротив, люди преклонного возраста, ничем подобным не занимающиеся, страдают серьезными когнитивными нарушениями.

Множество мышц нашего тела должно быть в тонусе. Подобно этому, множество участков мозга нуждается в тренировке. Чтобы сохранить здоровье мозжечка – участка мозга, отвечающего за произвольное движение, – необходимо заниматься физической работой, в частности развитием навыков, как в спорте.

Представление о том, что левое полушарие мозга выполняет одни виды деятельности, а правое – другие, верно лишь отчасти. Недавно открытые нейроны нового типа – веретенообразные клетки – перемещаются из одной половины мозга в другую и, по-видимому, активно задействованы в формировании высших эмоций у человека. В одном из экспериментов использование новейших сканеров мозга, позволяющих визуализировать отдельные нейроны, позволило увидеть «включение» (увеличение активности) веретенообразных клеток в мозге испытуемых, которые смотрели на фотографию любимого человека или слушали плач своего ребенка. Веретенообразные клетки могут быть особенно длинными, распространяясь по всей длине мозга, и тесно взаимодействуют с другими нейронами. Зачастую одна веретенообразная клетка имеет сотни тысяч связей с другими. В отличие от высокоорганизованных клеток коры головного мозга, отвечающей за рациональное мышление, веретенообразные клетки демонстрируют непредсказуемую и довольно экзотическую форму, а также структуру связей.

Веретенообразные клетки связаны практически с каждым участком мозга: таким образом они получают информацию обо всем, что происходит в остальных его структурах. Исследования, о которых мы упомянули, показали, что эти клетки не принимают участия в решении логических задач, именно поэтому мы не можем разумно контролировать свои эмоциональные реакции.

Помимо того что веретенообразные клетки имеют сложную структуру, их не так уж много. Из 10 миллиардов нейронов человеческого мозга лишь около 80 000 – веретенообразные клетки. Всего лишь у несколько видов животных имеются такие клетки. У горилл их порядка 16 000, у бонобо (карликовых шимпанзе) – около 2100, у шимпанзе – примерно 1800. Недавно выяснилось, что у китов больше веретенообразных клеток, чем у людей. Интересно, что у новорожденных такие клетки отсутствуют: первые появляются у человека в возрасте четырех месяцев и окончательно формируются к трем годам, что точно отражает процесс формирования у детей младшего возраста высших эмоций и способности ориентироваться в вопросах морали.

Примерно 45 000 веретенообразных клеток располагается в правом полушарии мозга, остальные 35 000 – в левом. По-видимому, этот небольшой дисбаланс и лежит в основе представления о том, что правое полушарие мозга отвечает за наши чувства, а левое – за логическое мышление. Но, несмотря на то что в правом веретенообразных клеток больше, оба полушария принимают участие в логической и эмоциональной деятельности. Поведение людей с редким отклонением, использующих только одно полушарие мозга, зачастую мало отличается от поведения нормальных – они также испытывают эмоции и мыслят логически.

Тренировка для ума

Представление о том, что правое полушарие мозга отвечает за творчество и эмоции, а левое – за логику и рациональность, скорее метафора, чем отражение реального положения вещей. Тем не менее тренировки для мозга должны включать как логические задачи, так и задания, вызывающие эмоциональную реакцию. И если в рамках рабочей или учебной деятельности вы не пользуетесь логическим мышлением, найдите себе такие занятия, которые потребуют решения задач. Выбор поистине огромен: от настольных игр, таких как шахматы, до решения кроссвордов и головоломок судоку. Вы можете задействовать логическое мышление, подсчитывая свои финансы или составляя план поездки. Чтение и письмо задействуют как логику, так и эмоции. Выражайте творческие и артистические наклонности, обучаясь игре на музыкальном инструменте. Учитесь творить искусство с помощью любых средств, включая компьютерную графику. Найдите хобби. Посещайте образовательные курсы для взрослых. Путешествуйте в новые места. Беседуйте с интересными и умными людьми. А главное, уделяйте особое внимание межличностным отношениям. Налаживайте прочные связи с другими людьми – в этом будут задействованы оба вида мозговой активности – и удовлетворяйте одну из основных человеческих потребностей (см. главу 9 (#litres_trial_promo)).

А вот и полезный совет для сохранения здоровья мозга: поразмышляйте, как сберечь здоровье своего мозга (и тела). Можете начать с включения некоторых из наших рекомендаций в свой индивидуальный план.

Терри2023: «Сегодня у нас есть возможность исправлять повреждения нервной ткани, например спинного мозга, с помощью стволовых клеток. Те, кто раньше не мог передвигаться без посторонней помощи, сегодня ходят сами».

Читатель: «Наверняка такого рода исследования начались еще в наше время, если их уже используют для лечения людей в 2023 году».

Рэй2023: «Они не просто начались в ваше время. Уже тогда в Массачусетском технологическом институте ученый Роберт Лангер лечил паралич нижних конечностей у мышей путем выращивания новых нервов из стволовых клеток. И эти мыши снова могли ходить».

Читатель: «Ходить по-настоящему?»

Терри2023: «Конечно, походка у них была немного странная, но ходили они очень даже неплохо. Любой человек с подобными проблемами был бы счастлив ходить так, как эти пережившие паралич мыши».

Зависимость

Одним из упомянутых выше недостатков нашего мозга можно считать его склонность к формированию зависимостей. Благодаря недавно обретенным возможностям моделировать и симулировать основные биологические и умственные информационные процессы мы получаем все более и более сложные данные о том, как работает биохимия зависимости. Например, дофамин – нейромедиатор удовольствия. Он выделяется, когда мы чего-то добиваемся, побеждаем в состязании, вступаем в отношения с предметом нашей любви, заботимся о ком-то, генерируем собственные или же по достоинству оцениваем чужие новые идеи. Когда люди испытывают трудности с регулярным выделением дофамина подобными общепринятыми способами, они зачастую начинают искать более легкие пути.

Один из таких путей – азартные игры. Чем менее вероятен благоприятный исход дела, тем больше выделяется дофамина. Таким образом, возбуждение от выигрыша в азартную игру может особенно хорошо стимулировать этот процесс. Это напоминает эпизод старого телесериала «Сумеречная зона», в котором игрок умирает и попадает на небеса. Там он, к своему удовольствию, оказывается в окружении роскошных красавиц и с еще большим удовлетворением обнаруживает, что всегда выигрывает в рулетку. Но совсем скоро теряет всякое удовольствие от игры, находя неизменные выигрыши крайне возмутительными. Он говорит дежурному ангелу, что на самом деле ему хотелось бы оказаться в «другом месте». На что ангел отвечает: «Но это и есть другое место». Получается, что привлекательность азартной игры зависит от ее непредсказуемости. И всем известно, что шансы выиграть в азартную игру всегда минимальны. Закономерно, что зависимость от такого способа высвобождения дофамина оказывается пагубной.

Похожий цикл саморазрушения наблюдается при наркотической зависимости, когда привыкание формируется за счет удовольствия, получаемого при приеме первой дозы. И хотя зависимость все еще висит дамокловым мечом над человечеством, уже наблюдается стремительный прогресс в понимании генетических основ ее формирования. К примеру, найдена связь между мутациями гена дофаминового рецептора D2 и злоупотреблением веществами, включая прием таких наркотиков, как кокаин и героин, а также табакокурение и переедание. Эти генетические мутации могут вызывать необыкновенно сильное ощущение удовольствия на ранней стадии употребления веществ, вызывающих привыкание. Но хорошо известный механизм зависимости подразумевает, что способность вещества вызывать подобное удовольствие со временем исчерпывается. Другие генетические мутации могут приводить к общему снижению способности организма выделять дофамин под влиянием ежедневных удовольствий и заставлять людей обращаться к другим веществам и видам деятельности, чтобы вернуть дофамин на привычный уровень.

Помимо морально-этических трудностей и проблем с законом, которые может принести зависимое поведение, выделение нейромедиаторов удовольствия, например дофамина, как результат злоупотребления веществами или другого зависимого поведения постепенно истощает естественные запасы дофамина и других нейромедиаторов удовольствия в мозге. Это ведет к крайнему усугублению зависимости от соответствующего вещества или поведения. В результате изменения химических процессов мозга оказываются настолько катастрофическими, что таким людям зачастую требуется профессиональная помощь.

Исследования показывают, что умеренное потребление алкоголя ассоциируется с увеличением продолжительности жизни, и нет ничего страшного, чтобы время от времени развлекаться азартными играми. Большинство генетически не предрасположены к зависимости от алкоголя или азартных игр, но у довольно многих людей гены несут такую предрасположенность. Важно определить, есть ли эти гены у вас. Если подобное обнаружится, следует избегать всего, что может увлечь в этот гибельный круговорот.

В настоящее время ведется разработка нового поколения лекарственных препаратов, которые смогут возвращать биохимические процессы зависимого человека в состояние, близкое к «дозависимому». Эти препараты не всегда изменяют природную предрасположенность, поэтому наиболее эффективны в сочетании с традиционными медикаментозными методиками лечения зависимости. К сожалению, частота рецидивов в случае зависимости от наркотических веществ, азартных игр, а также при других видах зависимого поведения очень высока даже при наличии психологической помощи больному. Хорошо известно, что наркозависимых людей принято считать неизлечимыми и они должны рассматривать себя в качестве «вечно выздоравливающих». Есть надежда, что число рецидивов можно снизить за счет применения лекарств нового поколения, оказывающих направленное влияние на столь коварные нейромедиаторные и гормональные механизмы формирования зависимости.

Здоровый образ жизни – здоровый мозг

Как обсуждалось выше, мы во многом есть то, что думаем. Не менее справедливо и высказывание о том, что мы – то, что мы едим. Наряду с тренировками для ума защитить здоровье мозга помогут наши рекомендации по питанию, подробно описанные в главе 11 (#litres_trial_promo) и в главе 13 (#litres_trial_promo). Мозг на 60 % состоит из жира, поэтому для его здоровья особенно важно потреблять полезные жиры. Как эйкозапентаеновая кислота (ЭПК), так и докозагексаеновая кислота (ДГК), составляющие основу жиров омега-3, которые содержатся в рыбе, считаются важными компонентами тканей мозга.

Основным катализатором старения мозга выступает воспалительный процесс (гиперактивация иммунной системы). Поэтому наши рекомендации по питанию, призванные сократить воспаления, например исключение из рациона углеводов с высоким гликемическим индексом (продукты с высоким содержанием сахара и крахмала), также важны и для сохранения здоровья мозга.

По данным двойных слепых плацебо-контролируемых исследований, приводившихся в таких ведущих медицинских журналах, как Nutrition, следующие питательные вещества чрезвычайно полезны для здоровья мозга.

Винпоцетин – натуральная добавка, получаемая из растения барвинок. Усиливает кровообращение в головном мозге, а также повышает уровень аденозинтрифосфата (АТФ) – источника энергии для мозга. Исследования показали, что винпоцетин улучшает память как у людей с хорошей памятью, так и у тех, кто страдает ее потерей.

Фосфатидилсерин – натуральная составляющая клеточной мембраны. Его наиболее высокое содержание приходится на клетки мозга. Употребление фосфатидилсерина замедляет потерю памяти и, по данным исследований, может способствовать восстановлению памяти у некоторых пациентов с возрастными ухудшениями памяти. Также фосфатидилсерин снижает уровень кортизола – основного гормона старения.

Ацетил-L-карнитин – натуральное вещество, повышающее производительность митохондрий – источников энергии внутри клеток. Также защищает мозг от старения, замедляя воспалительные процессы в тканях мозга.

Гинкго билоба на протяжении тысячелетий используется в традиционной китайской медицине в качестве одного из основных компонентов. Экстракт этого растения усиливает мозговое кровообращение. Результаты многочисленных исследований указывают на его способность замедлять потерю кратковременной памяти у пожилых людей. В Европе гинкго билоба считается рецептурным лекарственным препаратом, и рецепты на него выписываются чаще, чем на любое другое лекарственное вещество для лечения потери памяти.

ЭПК и ДГК представляют собой основные составляющие жиров омега-3 и присутствуют в высокой концентрации в тканях мозга. Обе кислоты способствуют сохранению эластичности мембран клеток мозга. Как уже упоминалось, наш мозг на 60 % состоит из жира; если уровни эйкозапентаеновой и/или докозагексаеновой кислот падают ниже нормы, мозг заменяет полезные жиры менее «правильными», такими как омега-6, и даже опасными трансжирами. Когда это происходит, клеточные мембраны теряют свою эластичность и передача сигналов между нейронами нарушается. Множество исследований показало, что употребление добавок ЭПК/ДГК может приводить к улучшению настроения и избавлению от таких симптомов, как депрессия и тревожность.

Фосфатидилхолин, о котором мы будем говорить в главе 2, считается ключевой составляющей клеточных мембран всех наших клеток, в том числе и клеток мозга. Исследования показали, что употребление фосфатидилхолина в качестве пищевой добавки может способствовать улучшению памяти и обучаемости у людей, не страдающих психическими расстройствами.

S-аденозилметионин – натуральное производное аминокислоты, которая в норме вырабатывается человеческим организмом и участвует в метилировании (см. главу 5 (#litres_trial_promo)). Зачастую в организме человека зрелого возраста содержание S-аденозилметионина критически низкое.
<< 1 2 3 4 5 >>
На страницу:
4 из 5

Другие аудиокниги автора Рэй Курцвейл