1) x ? y ? y ? x – коммутативность;
2) x ? x ? x – идемпотентность;
3) False ? y ? y, здесь False – нейтральный элемент;
4) True ? y ? True, здесь True – поглощающий элемент.
Исключение из общего правила составляют правила вычисления логических операций конъюнкция & и дизъюнкция ? в условиях действия законов поглощения:
(False & y) ? (x & False) ? False;
(True ? y) ? (x ? True) ? True;
Эти дополнительные правила формулируются для того, чтобы при замене Null-значения значениями False или True результат бы все равно не зависел бы от этого значения.
Как и ранее было показано для других типов операций, применение Null-значений в логических операциях могут также привести к неожиданным значениям. Например, логика на первый взгляд нарушена в законе исключения третьего (x ? ¬x) и в законе рефлексивности (x = x), поскольку при x ? Null имеем:
(x ? ¬x), (x = x) ? Null.
Законы не выполняются! Объясняется это так же, как и раньше: при подстановке Null-значения в выражение информация о том, что это значение сообщается одной и той же переменной теряется, а в силу вступает общее правило работы с Null-значениями.
Таким образом, делаем вывод: при выполнении логических операций с Null-значениями в качестве операнда эти значения определяются системами управления базами данных как применимое, но неизвестное.
5. Null-значения и проверка условий
Итак, из всего вышесказанного можно сделать вывод, что в логике систем управления базами данных имеются не два логических значения (True и False), а три, ведь Null-значение также рассматривается как одно из возможных логических значений. Именно поэтому на него часто ссылаются как на неизвестное значение, значение Unknown.
Однако, несмотря на это, в системах управления базами данных реализуется только двузначная логика. Поэтому условие с Null-значением (неопределенное условие) должно интерпретироваться машиной либо как True, либо как False.
В языке СУБД по умолчанию установлено опознавание условия с Null-значением как значения False. Проиллюстрируем это следующими примерами реализации в системах управления базами данных условных операторов If и While:
If P then A else B;
Эта запись означает: если P принимает значение True, то выполняется действие A, а если P принимает значение False или Null, то выполняется действие B.
Теперь применим к этому оператору операцию отрицания, получим:
If ¬P then B else A;
В свою очередь, этот оператор означает следующее: если ¬P принимает значение True, то выполняется действие B, а в том случае, если ¬P принимает значение False или Null, то будет выполняться действие A.
И снова, как мы видим, при появлении Null-значения мы сталкиваемся с неожиданными результатами. Дело в том, что два оператора If в этом примере не эквивалентны! Хотя один из них получен из другого отрицанием условия и перестановкой ветвей, т. е. стандартной операцией. Такие операторы в общем случае эквивалентны! Но в нашем примере мы видим, что Null-значению условия P в первом случае соответствует команда B, а во втором – A.
А теперь рассмотрим действие условного оператора While:
While P do A; B;
Как работает этот оператор? Пока переменная P имеет значение True, будет выполняться действие A, а как только P примет значение False или Null, выполнится действие B.
Но не всегда Null-значения интерпретируются как False. Например, в ограничениях целостности неопределенные условия опознаются как True (ограничения целостности – это условия, накладываемые на входные данные и обеспечивающие их корректность). Это происходит потому, что в таких ограничениях отвергнуть нужно только заведомо ложные данные.
И опять-таки в системах управления базами данных существует специальная функция подмены IfNull (ограничения целостности, True), с помощью которой Null-значения и неопределенные условия можно представить в явном виде.
Перепишем условные операторы If и While с использованием этой функции:
1) If IfNull ( P, False) then A else B;
2) While IfNull ( P, False) do A; B;
Итак, функция подмены IfNull (выражение 1, выражение 2) возвращает значение первого выражения, если оно не содержит Null-значения, и значение второго выражения – в противном случае.
Надо заметить, что на тип возвращаемого функцией IfNull выражения никаких ограничений не накладывается. Поэтому с помощью этой функции можно явно переопределить любые правила работы с Null-значениями.
Лекция № 3. Реляционные объекты данных
1. Требования к табличной форме представления отношений
1. Самое первое требование, предъявляемое к табличной форме представления отношений, – это конечность. Работать с бесконечными таблицами, отношениями или любыми другими представлениями и организациями данных неудобно, редко оправдываются затраченные усилия, и, кроме того, подобное направление имеет малое практическое приложение.
Но помимо этого, вполне ожидаемого, существуют и другие требования.
2. Заголовок таблицы, представляющей отношение, должен обязательно состоять из одной строки – заголовка столбцов, причем с уникальными именами. Многоярусных заголовков не допускается. Например, таких:
Все многоярусные заголовки заменяются одноярусными путем подбора подходящих заголовков. В нашем примере таблица после указанных преобразований будет выглядеть следующим образом:
Мы видим, что имя каждого столбца уникально, поэтому их можно как угодно менять местами, т. е. их порядок становится несущественным.
А это очень важно, поскольку является третьим свойством.
3. Порядок строк должен быть несущественным. Однако это требование также не является строго ограничительным, так как можно без труда привести любую таблицу к требуемому виду. Например, можно ввести дополнительный столбец, который будет определять порядок строк. В этом случае от перестановки строк тоже ничего не изменится. Вот пример такой таблицы:
4. В таблице, представляющей отношение, не должно быть строк-дубликатов. Если же в таблице встречаются повторяющиеся строки, это можно легко исправить введением дополнительного столбца, отвечающего за количество дубликатов каждой строки, например:
Следующее свойство также является вполне ожидаемым, потому что лежит в основе всех принципов программирования и проектирования реляционных баз данных.
5. Данные во всех столбцах должны быть одного и того же типа. И кроме того они должны быть простого типа.
Поясним, что такое простой и сложный типы данных.
Простой тип данных – это такой тип, значения данных которого не являются составными, т. е. не содержат составных частей. Таким образом, в столбцах таблицы не должны присутствовать ни списки, ни массивы, ни деревья, ни подобные названным составные объекты.
Такие объекты – составной тип данных – в реляционных системах управления базами данных сами представляются в виде самостоятельных таблиц-отношений.
2. Домены и атрибуты
Домены и атрибуты – базовые понятия в теории создания баз данных и управления ими. Поясним, что же это такое.
Формально, домен атрибута (обозначается dom(a)), где а – некий атрибут, определяется как множество допустимых значений одного и того же типа соответствующего атрибута а. Этот тип должен быть простым, т. е: