Оценить:
 Рейтинг: 4.5

История и философия науки. Учебное пособие для аспирантов юридических специальностей

Год написания книги
2013
Теги
<< 1 2 3 4 5 6 7 8 9 10 ... 13 >>
На страницу:
6 из 13
Настройки чтения
Размер шрифта
Высота строк
Поля

Утверждение и распространение христианства способствовало важным изменениям в представлениях об окружающей действительности, в мировоззрении. Человеку Древнего мира действительность представлялась чередой повторяющихся периодов: процессы природы и общества для него носили цикличный характер. Пришествие Христа, учение о душе человека, эсхатология (Царство Божие – как главная цель человека и человечества) указали на линейность развития Вселенной и мира человека, на уникальность и каждого исторического фрагмента действительности, и каждого индивида.

Средневековье рассматривает человека не просто необходимым элементом бытия, а венцом творения. Тем самым определена исключительность субъекта познавательного процесса, его миссия в постижении бытия. Антропоцентризм Средних веков предполагает неоднозначность личности, ее противоречивость, греховность, слабость и, в то же время, ее подчиненность единому началу, исключительность, старшинство в иерархии живой природы, богоподобность.

Со средневековым антропоцентризмом связан и геоцентризм, представляющий Землю центром сотворенной Богом Вселенной, целостность мира, нацеленность человека на трудолюбие, верность принципам, упорное продвижение к поставленной Богом главной цели и всем промежуточным целям, начертанных провидением.

Процесс обоснования религиозных ценностей, божественных истин требовал надежного абстрактно-мыслительного сопровождении, логического доказательства, выработки и совершенствования правил логического мышления. Мыслители-богословы внесли определенный вклад в развитие и культивирование логики среди наиболее просвещенной части населения планеты современной им эпохи.

Несмотря на всю свою условность и перегруженность символизмом практическая деятельность исследователя Средних веков не исключала эмпирического компонента. Особенно показательна в этом отношении деятельность в сферах астрологии, алхимии. В первом случае неизбежно развивался математический аппарат, накапливался опыт наблюдения за небесными светилами, выявлялись закономерности вселенских процессов, с одной стороны, принципов исчислении, с другой. Алхимия требовала развития материальной базы исследовательской работы. Учеными в этой области был накоплен огромный экспериментальный опыт, достаточно глубокие знания в области химии, в выработке методов исследований.

Значительные шаги были совершены в математике и астрономии. Причем большая роль в их развитии принадлежит ученым Средневекового Востока, представителям стран Центральной Азии, арабских стран. Культура и наука человеческой цивилизации в значительной степени обязана им важными достижениями в области медицины, а также возрождением интереса к античной философии и прежде всего к перипатетике.

Вместе с тем общая атмосфера и мировоззрение Средних веков препятствовали динамичному развитию естествознания, отказывали науке в праве искать свои собственные подходы и принципы освоения действительности. Философия и наука (в то время, скорее, составная часть философского знания в том смысле, что оно противостояло религиозному) находились под строгим контролем религии, играли роль инструментов, дополняющих священное писание.

Направленность на реальные объекты природы чаще всего заменялась в этот период манипулированием понятиями и категориями, что имело и определенную положительную составляющую но в большей степени ограничивало реальный научно-познавательный интерес.

В конце концов, все было подчинено процессу, развивающемуся по представлениям средневекового мыслителя от исходной точки бытия к главной цели, определенной провидением. То есть от Бога – к Богу. И этим определялась вся жизнь научного знания в эту историческую эпоху: и полученного в наследство от Античности, и возникшего в недрах самого Средневековья.

Тем не менее в этот период плодотворно трудились сотни исследователей. Творчество многих из них, в том числе таких, как Авиценна (Абу Али Хусейн ибн Абдаллах ибн Сина) (980 – 1037), Фибоначчи (Леонардо Пизанский) (1170–1250), Роджер Бэкон (1214–1292), Уильям Оккам (1285–1349), Альберт Саксонский (1316–1390) и многих других (в различных источниках можно найти от десяти до пятидесяти и более имен), признано сегодня важными для становления и развития науки.

Познание в Средневековье было лишь ступенью к подлинной науке, но ступенью чрезвычайно важной, необходимой. Противоречия и проблемы мировоззрения того времени, искусственные ограничения и препятствия исследованиям со стороны церкви и светской власти привели к глубокому кризису, затронувшему не только религиозную, но и политическую, этическую, эстетическую сферу. В это период произошли существенные изменения в миропонимании, в оценках природных явлений, в самооценке человечества в лице мыслителей и ученых того времени: Войцех из Брудзева (Альберт Брудзевский) (1445–1497), Вальтер Бернхард (1430–1504), Никколо Макиавелли (1469–1527), Николай Коперник (1473–1543) и некоторых других. Творчество последнего иногда оценивают как революцию в науке[20 - Нугаев Р. М. Коперниканская революция: интертеоретический контекст // Вопросы философии. 2012. № 3. С. 110–120.].

Но и тогда наука еще не получила полной автономии, не стала отдельной сферой социальной деятельности. Подлинная наука – результат труда профессиональных ученых, объединяющихся в научные сообщества; научные открытия, полученные рациональным путем, подкрепленные и проверенные экспериментом, система непротиворечивых знаний о природе, раскрывающих сущность ее компонентов, процессов и явлений, – возникла в Новое время. Точкой отсчета ее возникновения чаще всего считают научное творчество Галилео Галилея (1564–1642), а также начало науки нередко связывают с именами Френсиса Бэкона (1561–1626) и Рене Декарта (1596–1650).

Одним из важных компонентов рождения классической науки стало стремление к эмпирическому знанию, большая работа по проведению многочисленных экспериментов и фиксации этих знаний в научных книгах[21 - Изобретение книгопечатания в Европе принадлежит Иоганну Гутенбергу (ок. 1400–1463). Однако первые опыты печати книг были проведены в Китае в Х в. (Алмазная сутра), иногда первенство в книгопечатании приписывают китайскому мастеру Би Шэну (середина XI в.).] (чуть позже – и в журналах).

Не менее важным стало крушение средневековой (заимствованной, отчасти, в античности) космософии. На первый план выходит естественнонаучный подход. Представления о мире просвещенных образованных людей Нового времени принципиально отличались от онтологии прошлых эпох. Шарообразность Земли была доказана не только теоретически, но экспериментально; наша планета уже не считалась центром Вселенной, она оказалась одной из планет Солнечной системы.

Огромную роль в становлении науки сыграла трансформация общества в политической и экономической сфере. В это время формируются системы, основанные на демократических принципах. Социальная, нравственная, политическая свободы становятся ценностями нового общества. Капиталистические отношения, возрастающая конкуренция и резкий рост объема производства диктуют новые требования к его технической и технологической базе, стимулируют изобретательство, развитие инженерной деятельности, глубокие исследования и опыты.

Важное место в развитии научного мировоззрения и экспериментальной науки сыграли новые географические открытия (обусловленные в свою очередь теоретическими предположениями, основанными на рациональных выводах). Их значимость определялась и самим процессом открытия и изучения новых территорий, широт, климатов, фаун, социумов, и необходимостью совершенствования кораблей, их оснастки, компоновки, и самими результатами открытий, приведших в движение десятки тысяч людей, огромные по тем временам материальные и финансовые ресурсы.

Все это способствовало возникновению нового типа мышления – научного.

Большое значение имело утверждение в исследовательской деятельности таких принципов, как:

• комбинаторность – приведение всего многообразия мира к совокупности вещей и явлений в различных пропорциях и количестве, сочетавших ряд «базовых» форм;

• квантитативизм — универсальный метод ко личественного сопоставления и оценки форм, образующих всякий предмет;

• натурализм – признание единства неорганической и органической, живой и неживой природы;

• причинно-следственный автоматизм — утверждавший всеобщий детерминизм и исключавший средневековый символизм.

На смену абстрактным отвлеченным умозаключениям, основанным на манипуляции понятиями, категориями и синтезе полученных таким образом результатов рассуждений, приходит метод анализа (с применением метода моделирования) систем, явлений и процессов реальности. С этим связан и другой метод, утвердившийся в это время, – геометризм, позволяющий представить мир в его естественном единстве, во взаимной расположенности по отношению друг к другу всех его взаимосвязанных компонентов.

Возникло естественнонаучное мировоззрение, способствующее формированию и становлению стиля научного мышления.

Основные черты стиля научного мышления:

• отношение к при роде как к сложному естественному объекту, лишенному антропоморфности;

• опора в исследованиях на строгий математический расчет;

• стремление выявить причинно-следственные связи исследуемых процессов и явлений;

• отказ от мистической предвзятости и символизма;

• объективное описание результатов наблюдений и экспериментов.

Ядром естествознания становится гипотетико-дедуктивный метод, переход к которому определен исследовательской работой Г. Галилея. Он в своей деятельности один из первых использовал метод принятия правдоподобных гипотез, объясняющих состояние фрагментов реальной действительности, из которых следовали рациональные логические выводы, проверяемые затем экспериментальным способом. Метод включал в себя два основных компонента: получение знаний о закономерностях природы путем рациональных рассуждений и апробация полученных логическим путем результатов с помощью экспериментов, проверки идеальных результатов практикой. Центральным тезисом учения Галилея стал тезис о том, что ни одно тело не изменяет скорости ни по величине, ни по направлению без действия дополнительной силы.

Начинания Г. Галилея в той или иной мере (применительно к требованиям и социальным традициям соответствующего времени) продолжили и развили Блез Паскаль (1623–1662; вывел основной закон гидростатики, стоял у истоков математического анализа, теории вероятностей), Исаак Ньютон (1642–1727; автор закона всемирного тяготения, трех законов механики, работал в области интегрального и дифференциального исчисления); М. В. Ломоносов (1711–1765; известен своей молекулярно-кинетической теорией, одним из начал термодинамики); Карл Линней (1707–1778; автор системы классификации растительного и животного мира); Леонард Эйлер (1707–1783; автор многих работ по дифференциальной геометрии, математическому анализу, оптике, баллистике) и многие другие.

Таким образом, в XVII–XVIII вв. была создана прочная основа всех последующих научных исследований, основанная на классической методо логии эксперимента и математического анализа. В этот период сложились научные сообщества[22 - Девятова С. В., Купцов В. И. Возникновение первых академий наук в Европе // Вопросы философии. 2011. № 8. С. 127–135.], лаборатории, научно-образовательные учреждения, научные журналы и альманахи.

Возникла глубоко структурированная специфическая сфера познавательной деятельности, новый, чрезвычайно эффективный социальный институт.

Однако классическая наука со временем получила целый ряд внутренних и внешних проблем. С развитием средств научной работы – техники, приборов, технологий – были обнаружены такие явления природы, которые классическая наука не могла объяснить. Внедрение достижений науки в повседневную жизнь, в промышленное производство вызвали, помимо положительных эффектов, и ряд новых проблем технического, политического, этического характера и т. д.

Новые проблемы раскрыли несостоятельность теорий классической науки. Пришла эра неклассической науки.

Появление неклассической и (позже) постнеклассической науки было вызвана естественным ходом развития общества, новыми открытиями, развитием техники, изменениями в его политическом устройстве, а также внутренними затруднениями.

Возникли проблемы со сложением двух скоростей (скорость света и линейная скорость точки на поверхности Земли не поддавались привычному сложению или вычитанию), с искривлением пространства (параллельные, до сих пор не пересекающиеся, при определенных условиях проявили возможность пересечься). Были открыты новые виды излучений, электроны (а затем все новые элементарные частицы), возникли предположения о существовании ранее неизвестных космических объектов, что впоследствии было доказано.

Механистическая кар тина мира, характерная для классической науки и рассчитанная на относительно малые скорости, привычные температуры и масштабы, не объясняла подобные явления.

Попытки преодолеть сложности классической науки в объяснении новых экспериментальных фактов привели к появлению нового мышления, к неклассичекой науке.

Переход от «классики» к «неклассике» означал изменение самого качества миропонимания, появление принципиально нового мышления. Среди его основных отличий обычно называют такие, как иное понимание реального состояния и качества действительности, которая потеряла линейный устойчивый характер, предстала перед исследователями принципиально неустойчивой, в любой момент готовой «взорваться», проявить непредсказуемость.

Это повлекло существенные изменения в понятийно-категориальном аппарате; произошел отказ от привычных классической науке понятий «линейность», «неизменность», «постоянство», «равновесность», «обратимость» и замена их на «нелинейность», «сложность», «неустойчивость», «неравновесность», «когерентность», «необратимость», «изменчивость» и т. д.

Новому мышлению свойственно признание устаревшими характерных для классической науки тезисов о том, что «целое всегда больше части», «деление вещества безгранично», «часть целого несамодостаточна» (вне этого целого «не имеет смысла») и другие. Целое и часть или система и подсистема оказываются сопоставимыми, несводимыми, взаимопроникающими.

В науке устанавливается принцип релятивизма, на первый план выходят не отдельные объекты, а характер и совокупность отношений (и соотношений) между ними, осознание функциональной взаимозависимости процессов и явлений. Мир стал сложной совокупностью (нелинейно) взаимодействующих систем, а представления о нем стали зависимы от выбранной наблюдателем «системы координат», имеющей свои физические и иные параметры.

В совершенно ином свете предстала проблема истины. При этом сложности (и надежности научной позиции) добавляет то, что мир ни в коем случае не стал более субъективным; напротив картина мира стала более строгой, но более сложной, с множеством пока непонятных, ожидающих объяснения, деталей.

Другим важным противоречием стало то, что стремительно возрастающий объем информации о природе, позволяющий существенно уменьшить число «белых пятен» неразгаданности, необъяснимости в привычном для нас мире, обнаружил так же быстро растущее число проблем и появление еще большего массива неизвестного.

Возникли новые условия, новые принципы, показавшие, что наступил относительно новый период развития науки – постнеклассический. Среди таких принципов следует отметь «принцип дополнительности», разрушающий классическую идею однозначного соответствия мысли о реальности (ее отражения) с ней самой; этот принцип отражает также относительность характера представлений об объекте природы, обусловленную сложным соотношением параметров инструментов, с помощью которых осуществляется изучение этого объекта.

Новый масштаб, скорость и разнообразие развития научной мысли привели к конструированию гипотезы Большого взрыва как исходного пункта актуальной формы нашей Вселенной. Научное познание обусловило возникновение элементов новой версии науки: глобального эволюционизма, универсальной теории развития.

«Постнеклассика» ставит на первое место случайность, неопределенность, вероятность, исключаемые из рассмотрения классикой и осторожно принимаемые в неклассике. Случайность, неопределенность, хаос становятся фундаментальными основами бытия. «Точка бифуркации» – не просто модное понятие, а фактически категория, отражающая важнейший этап развития всех систем, показавший сложность, непредсказуемость и неотвратимость процессов саморегуляции развития.

Новый этап в науке стал характеризоваться тем, что буквально все фундаментальные, насыщенные формализмом современные естественнонаучные конструкции стали использовать идею инвариантности параметров относительно фиксированных групп преобразований. Стал утверждаться в научном познании принцип симметрии. В неклассической науке процесс познания явлений стал осуществляться нередко без эмпирических исследований, которые в современной физике элементарных частиц и ряде других областей науки не всегда возможны. Симметрия или инвариантность – разновидность абстракции – позволяет отвлечься от несходного и связать в одном законе объекты и понятия, кажущиеся разобщенными. Связывание несвязного представляло мощный эвристический прием, пополняющий синтетические ресурсы теоретического разума.
<< 1 2 3 4 5 6 7 8 9 10 ... 13 >>
На страницу:
6 из 13