Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия
Марк Боуэн
Наука: открытия и первооткрыватели
Летом 2018 года стало известно о важнейшем открытии: антарктический телескоп «Ледяной куб» зарегистрировал нейтрино высокой энергии – то есть частицу, возникшую не в атмосфере Земли, а прилетевшую, скорее всего, из дальнего космоса. Нейтрино многое могут рассказать об устройстве Вселенной, но эти частицы крайне трудно поймать. Именно для решения этой задачи на Южном полюсе в течение нескольких десятилетий строился грандиозный нейтринный телескоп: в чистейшем антарктическом льду на глубине полутора-двух километров повисли нити с чувствительными детекторами; это настоящее чудо современных технологий и один из самых грандиозных научных проектов в истории. История эпической стройки, полная прорывов и неудач, показана в контексте бурного развития физики частиц в XX столетии.
Марк Боуэн
Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия
Памяти Брюса Коси и Пера Олофа Хульта
Охотно верится, что свойств невидимых, кроющихся в природе вещей, более, чем видимых. Однако кто в состоянии раскрыть перед нами весь мир этих свойств, во всей их совокупности? Кто в состоянии выяснить степень важности, их сходства и различия, роль каждого из них? Каковы их функции, где их место – вот вопросы, вкруг которых вечно блуждает человеческий ум, никогда, однако, их не разрешая.
– Томас Бернет (1692)
(Использовано Кольриджем в качестве латинского эпиграфа для поэмы «Сказание о старом мореходе»)
Серия «Наука: открытия и первооткрыватели»
Mark Bowen
THE TELESCOPE IN THE ICE
Inventing a New Astronomy at the South Pole
Перевод с английского Павла Миронова
Печатается с разрешения автора при содействии его литературных агентов ICM Partners.
Исключительные права на публикацию книги на русском языке принадлежат издательству AST Publishers.
© 2017 by Mark Bowen
© Перевод. П. Миронов, 2018
© Издание на русском языке AST Publishers, 2018
Вступление
Об ошибках
Вселенная не может существовать в привычном нам виде без нейтрино, однако кажется, что эти частицы существуют в своей отдельной Вселенной, и мы пытаемся вступить в контакт с этой потусторонней Вселенной нейтрино. И хотя я как физик понимаю происходящее с точки зрения математики и разума, меня не перестает поражать то, что меня повсеместно окружает нечто, напоминающее дух или бога, которого я не могу коснуться, но которого могу оценить с помощью измерений. Я умею это делать, и мне кажется, что я измеряю духовный мир или что-то в этом роде[1 - Примечания, обозначенные цифрами, принадлежат автору и ведут в конец книги. Примечания, обозначенные звездочками, принадлежат переводчику.].
– Питер Горэм
Вноябре 2013 года международный союз, управляющий работой нейтринной обсерватории IceCube, заявил, чем ему удалось обнаружить высокоэнергетические нейтрино, приходящие на Землю из далекого космоса
. Эта новость знаменовала рождение новой формы астрономии, связанной не с привычным для нас космическим курьером – светом, но с одной из самых странных из элементарных частиц – нейтрино. Это событие также увенчало поиски, которые начались пятью годами ранее благодаря силе воображения небольшой группы провидцев и в ходе которых было сделано немало героических попыток и случилось много неудач.
Отчасти эти поиски оказались настолько длительными, потому что именно такое время нужно необычному телескопу, чтобы увидеть необычную частицу. IceCube не похож ни на один телескоп, который вам доводилось видеть или о котором приходилось слышать. Более того, его и увидеть никто не сможет, поскольку IceCube погребен на глубине полутора километров во льдах на географическом Южном полюсе.
Создатели телескопа не могли видеть его даже тогда, когда его строили. Фрэнсис Халзен, бельгийский теоретик из Университета штата Висконсин, придумавший весь этот проект, говорит, что процесс строительства напоминал работу в темной комнате без единого окна. В отличие от обычного телескопа, этот инструмент не использует ни линз, ни зеркал. На данный момент он состоит из 86 километровых «нитей» оптических детекторов, каждый из которых запаян в стеклянную сферу размером с баскетбольный мяч, способную выдерживать большое давление. Затем эти «нитки жемчуга» были опущены в 86 скважин глубиной по 2,5 километра, просверленных во льду с помощью гигантского бура, использовавшего горячую воду. Затем нити вмерзли в лед на нужной глубине. Таким образом, самые верхние «жемчужины» располагаются на глубине полутора километров. Отверстия во льду просверлены в точках шестиугольной решетки, покрывающей квадратный километр поверхности льда. В результате свыше 5000 детекторов этого уникального устройства отслеживают все происходящее в массе льда объемом около одного кубического километра и весом около миллиарда тонн – удивительно чистого (на радость ученым) глубинного антарктического льда. Лед в этих местах – чистейшее из всех известных нам природных веществ, он даже чище алмаза.
Когда-то журнал Scientific American назвал этот телескоп «самым странным» из семи чудес современной астрономии
. И, возможно, самая странная его черта состоит в том, что он смотрит не вверх, в антарктическое небо, под которым и располагается; он направлен вниз, прямо в лед. Задача IceCube – изучать северное небо, глядя на него насквозь через всю планету. Поскольку нейтрино – это единственная известная нам частица, способная пройти через весь земной шар, не будучи поглощенной и не отклонившись от своего курса, то понятно, что любая частица, долетевшая до нашего ледяного куба с севера, должна представлять собой нейтрино. Инструмент использует Землю в качестве щита, позволяющего блокировать другие типы частиц (присутствие которых может создать искаженный сигнал).
Нейтрино, так легко проходящее сквозь планету, не любит показывать своего лица. Иногда эту частицу даже называют частицей-призраком. Возможно, что это самая распространенная частица во Вселенной – к моменту, когда вы закончите читать это предложение, перед вашими глазами пронесутся несколько сотен миллиардов нейтрино, – но увидеть ее почти невозможно, и она точно не повредит вашим глазам, поскольку почти не взаимодействует ни с какой материей. Именно поэтому ее очень сложно выявить. Как однажды сказал нобелевский лауреат и комик-любитель Леон Ледерман,
частицу, которая вообще ни с чем не реагирует, невозможно найти. Рассказы о ней вполне могут оказаться сказками. Вряд ли нам удастся получить факты, подтверждающие существование нейтрино.
Обычное нейтрино пройдет незамеченным – а следовательно, и невыявленным – даже сквозь кусок свинца толщиной в один световой год, то есть 9,5 триллиона километров. Поэтому у частицы нет никаких проблем с прохождением сквозь Землю, плотность которой значительно меньше, чем у свинца, а толщина в сравнении со световым годом не превышает толщины листа бумаги. Многие нейтрино как раз и будут проходить сквозь IceCube. Однако время от времени какая-нибудь из частиц вступит во взаимодействие со льдом вокруг детектора или с океанским дном под ним. В результате взаимодействия возникнет заряженная частица, которая будет двигаться в том же направлении, что и ее родительское нейтрино, а за ней будет тянуться след светло-синего цвета. Детекторы IceCube улавливают этот свет, а, наблюдая за тем, как он проходит через трехмерную сетку детекторов, ученые могут определить направление движения заряженной частицы и, соответственно, направление движения ее родителя-нейтрино. Это и превращает IceCube в телескоп.
Как это часто бывает, у проблемы, из-за которой эту крошечную частицу так сложно найти, имеются и положительные стороны, особенно интересные для астрономии. Поскольку нейтрино способно проходить через очень плотные типы среды, непрозрачные для света с любой длиной волны, эта частица может нести в себе информацию из областей Вселенной, недоступных обычному телескопу, например из недр звезд – в том числе и взрывающихся звезд, известных нам под названием «сверхновых», – или областей нашей галактики, закрытых облаками межзвездной пыли, – к примеру, из черной дыры, лежащей в центре галактики.
Одна из причин возникновения этой новой астрономии заключается в том, что мы хотим разобраться в сути самых масштабных событий и объектов во Вселенной: сверхновых звезд, звездных скоплений с активным ядром, остатков сверхновых, гамма-всплесков, сталкивающихся галактик и других странных объектов, порой находящихся за пределами нашего воображения. С точки зрения науки это может привести к дальнейшему развитию космологии и успешным поискам таинственной и пока что неизвестной нам холодной темной материи, из которой и состоит в основном Вселенная. Свое развитие получит и чистая физика элементарных частиц, поскольку все эти объекты представляют собой, по сути, огромные ускорители частиц, работающие по тем же базовым принципам, что и ускорители, созданные людьми на Земле, в том числе и Большой адронный коллайдер (БАК) стоимостью в несколько миллиардов долларов, с помощью которого в 2012 году было доказано существование бозона Хиггса, – однако в значительно больших масштабах.
Само по себе нейтрино стало объектом изучения в физике элементарных частиц лишь в последние годы, поскольку в 1998 году этой частице удалось пробить первую и пока что единственную брешь в защите стандартной модели физики элементарных частиц. Эта теоретическая модель описывает «строительные кирпичики» материи, элементарные частицы и то, как они взаимодействуют друг с другом на основе трех из четырех фундаментальных сил: слабого ядерного взаимодействия, сильного ядерного взаимодействия и электромагнитного взаимодействия. Стандартная модель, сформулированная в 1970-е годы, оказалась очень успешной, однако кое-кто начал чувствовать себя в ее рамках как в смирительной рубашке
. После открытия бозона Хиггса, последней частицы в стандартной модели, которую было необходимо найти, кажется, что новых открытий уже не предвидится, но физикам не нравится пребывать в слишком жестких (и комфортных) ограничениях. Они всегда ищут чего-то нового, а удивительное поведение нейтрино дает основания предполагать, что нам еще предстоит изучить массу пока неизвестных явлений.
И это возвращает нас к основной причине создания этого необычного инструмента. Совершенно новая научная область – нейтринная астрономия – позволила нам открыть новое окно во Вселенную, и крайне редко в истории астрономии бывает так, что появление подобных окон не приводит к невообразимым прежде открытиям. Классическим примером может служить история Галилея.
Первые оптические телескопы были построены во Фландрии для нужд купцов, которые могли получить преимущество на рынке, если заранее узнавали, какие товары есть, а каких нет, на кораблях, идущих через Ла-Манш
. Галилей использовал свои обширные познания в оптике и математике, чтобы собрать достаточно качественный инструмент, который он продемонстрировал венецианскому дожу и предложил использовать в военных действиях. Через несколько месяцев он ясной ночью направил телескоп на Луну, когда Юпитер, второй по яркости объект в небе, находился чуть выше и правее нее. Это позволило ему открыть четыре «Медичийские звезды», известных в наши дни как луны Юпитера. То обстоятельство, что Галилей заметил их необычное, «еретическое» вращение вокруг планеты, доставило ему впоследствии немало проблем.
В 1965 году Арно Пензиас и Роберт Уилсон, два физика из компании Bell Telephone Laboratories, сделали неожиданное открытие, когда проектировали наземную радиоантенну для спутников связи. Тестируя рогообразную антенну, которая должна была обеспечить связь без каких-либо помех, Пензиас и Уилсон направляли ее на пустые, как им казалось, участки неба и с удивлением обнаружили, что антенна всякий раз улавливала небольшую дозу какого-то шума. Никакие конструкционные улучшения не помогли. Оказалось, что «шум» представляет собой вполне реальный сигнал – космическое микроволновое фоновое излучение, послесвечение Большого взрыва, который породил нашу Вселенную около 14 миллиардов лет назад. Это открытие изменило отношение к Большому взрыву и космологии в целом – из объекта насмешек они вдруг превратились в научные темы, требующие пристального изучения. Этот случай наглядно иллюстрирует еще один аспект научного открытия: ум ученого должен быть готов интерпретировать то, что он измеряет или «видит» – или даже только собирается увидеть. К тому времени, когда Пензиас и Уилсон провели свои измерения, теории Большого взрыва и микроволнового послесвечения уже вынашивались на протяжении десятилетий. Они получили Нобелевскую премию не за то, что нашли сигнал, а за то, что смогли интерпретировать его с помощью знания и инструментов того времени. Именно такие большие скачки от теории к эксперименту двигают науку вперед. Порой лидирующие позиции занимает теория, а порой накопленный вес необъясненных экспериментальных свидетельств приводит к развитию новых теорий или даже к изменению научной парадигмы. И, как мы увидим в этой книге, подобное развитие научных идей может занимать десятилетия.
После подписания в 1963 году договора о запрещении ядерных испытаний в трех средах Министерство обороны США начало отправлять на орбиту спутники, чтобы удостовериться в том, что СССР не нарушает условий договора, испытывая бомбы в космосе, под водой или на Луне. Идея проверки состояла в том, чтобы пытаться уловить гамма-лучи (невидимое для глаза излучение с более короткой длиной волны, чем рентгеновское), возникающие при ядерном взрыве. Спутники так и не смогли уловить этих лучей, однако смогли выявить целый ряд неких «нарушений договора» в глубоком космосе, а именно коротких и поразительно интенсивных всплесков гамма-лучей где-то очень далеко. Научное сообщество узнало об этом открытии лишь через несколько лет, когда с данных был снят гриф секретности, а загадочным источникам всплесков было дано ни к чему не обязывающее название «гамма-всплески» (gamma ray bursters, или GRB). За краткий период длительностью от 1 до 20 секунд GRB испускают примерно столько же света, что и все остальные звезды и галактики в известной нам Вселенной. Теория утверждает, что при этом они должны отдавать и нейтрино, поэтому GRB представляют большой интерес для IceCube.
Астрофизик Кеннет Лэнг отмечает, что
наша небесная наука, по всей видимости, определяется наличием у нас тех или иных инструментов, и ее развитие будет идти за счет неожиданных открытий, сделанных с помощью уникальных телескопов и оборудования для отслеживания новых явлений… можно быть уверенным в том, что наблюдаемая нами Вселенная представляет собой лишь малую толику того, что еще ждет своего открытия
.
Мечта о большом открытии – это лишь один из стимулов ученого; однако мне представляется, что мышление ученых несколько искажено чрезмерной чувствительностью к мнению СМИ и к престижным наградам вроде Нобелевской премии. Уже ставшее своеобразным клише восприятие научных результатов как чего-то грандиозного особенно заметно в физике. Порой кажется, что в этой науке открытие, «меняющее наше представление о Вселенной», происходит чуть ли не каждые несколько месяцев. В газетных и журнальных статьях неминуемо возникают слишком громкие формулировки для описания даже самых незначительных результатов, и в сложившейся ситуации отчасти стоит винить и самих физиков, которые предпочитают заявлять во всеуслышание о своих открытиях на пресс-конференциях – еще до публикации в научной литературе и не дождавшись критической оценки со стороны коллег. В реальности же открытия уровня теории относительности или дарвиновской эволюции делаются крайне редко.
Тем не менее во всем этом шуме, который любит научная журналистика, есть своя правда. Ученые в самом деле искренне наслаждаются своей работой, и именно жажда открытия заставляет их вылезать по утрам из постели и приниматься за дела. Почти каждый день они узнают что-то новое, пусть и не очень важное, решают запутанные технические проблемы или проливают свет на какой-то до сих пор темный уголок в области, в которой работают. Больше чем в половине случаев они ошибаются, однако при этом как минимум движутся по верному пути. И понимание собственной неправоты – процесс, ведущий от смятения к ясности, – может быть столь же вдохновляющим, как и осознание своей правоты.
По словам Фрэнсиса Халзена, покойный Джон Бакал, уважаемый теоретик нейтрино из принстонского Института перспективных исследований, утверждал, что
у физиков есть два сокровенных и темных секрета, которые они старательно прячут от мира. Первый состоит в том, что физика не развивается логическим образом, а представляет собой цепь неудач… А второй заключается в том, что физикам настолько нравится заниматься своей работой, что они готовы делать ее даже бесплатно.
Цель этой книги состоит в том, чтобы продемонстрировать вам правоту Бакала. Я расскажу вам о внутренних деталях эксперимента, который дал физикам очень многое из того, ради чего они живут. Почти 20 лет я наблюдал за этим процессом, заняв самое лучшее место в зрительном зале.
* * *
Впервые с IceCube меня познакомил в 1997 году Брюс Коси, главный бурильщик. Это произошло довольно странным образом. Солнечным июньским днем в моем бостонском доме раздался звонок от редактора журнала Natural History. Она поинтересовалась, найдется ли у меня время написать статью о палеоклиматологе Лонни Томпсоне, который изучает керны высокогорного льда, чтобы узнать, каким был климат в прошлом и какие именно изменения в нем произошли.