Оценить:
 Рейтинг: 4.6

Самая главная молекула. От структуры ДНК к биомедицине XXI века

Год написания книги
2017
Теги
1 2 3 >>
На страницу:
1 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
Самая главная молекула. От структуры ДНК к биомедицине XXI века
Максим Франк-Каменецкий

Библиотека ПостНауки
Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы, которые, в сущности, оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и математика. Это отличает данную книгу от множества других, посвященных ДНК.

Максим Франк-Каменецкий

Самая главная молекула. От структуры ДНК к биомедицине XXI века

Дизайн обложки А. Стельмашук

© Франк-Каменецкий М., 2017

© НП «Редакционно-издательский дом «ПостНаука», 2017

© ООО «Альпина нон-фикшн», 2017

Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).

Предисловие

Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь, из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы. В сущности, ответы оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и математика. Это отличает данную книгу от множества других книг, посвященных ДНК.

У этой книги своя собственная биография. Первая ее версия под названием «Самая главная молекула» была напечатана издательством «Наука» в популярной серии «Библиотечка "Квант"» более 30 лет назад. Тиражи научно-популярной литературы в советское время были громадными, и 150 000 экземпляров книги быстро разошлись. Ее прочли многие школьники и студенты. Но и маститые ученые, в особенности физики и математики, нашли книгу полезной и интересной. Второе, существенно переработанное и дополненное, издание было выпущено «Библиотечкой "Квант"» в 1988 году опять громадным тиражом (130 000). Тогда же стали появляться переводы книги на иностранные языки под разными названиями. Первое англоязычное издание (для которого она была вновь существенно переработана и дополнена) было осуществлено в 1993 году нью-йоркским отделением немецкого издательства VCH. Под новым, непереводимым на русский язык названием Unraveling DNA книга стала широко известна в читающем по-английски мире, в особенности после того, как в 1997 году американское издательство Addison-Wesley опубликовало второе, вновь переработанное и дополненное, издание в мягкой обложке, которое до сих пор регулярно допечатывается и распространяется издательством Perseus Books Publishing. Вышедшее в 2004 году в издательстве КДУ («Книжный дом "Университет"») третье русское издание книги под новым заглавием «Век ДНК» и опубликованное в 2010 году издательством «АСТ Пресс» под заголовком «Королева живой клетки» четвертое издание в значительной степени представляют собой авторский перевод на русский язык второго издания книги Unraveling DNA, причем в ходе их подготовки она была вновь существенно переработана и дополнена. Автор постепенно не только дополнял ее новым материалом, но и что-то выбрасывал, чтобы она не распухала.

Там, где это возможно, он избегал применения научных терминов. Но совсем без них обойтись невозможно. Основу жизни составляет большое число достаточно сложных молекул, и, не называя их, ни о чем рассказать было бы нельзя. Помощь в освоении терминологии призван оказать «Словарь терминов», помещенный в конце книги.

Она написана с таким расчетом, что ее не обязательно читать подряд. Главы в значительной степени независимы друг от друга. Читатель, которому не терпится познакомиться с биологическими и медицинскими аспектами молекулы ДНК, может опустить при первом чтении главы 3, 7, 8 и 9.

В течение прошедших со времени издания первой версии книги 30 с лишним лет она подвергалась существенной переработке приблизительно каждые 5 лет. И все же последняя переработка потребовала наибольших изменений. Внося многочисленные правки и дополнения по сравнению с предыдущими изданиями, автор особенно остро ощутил, насколько ускорился в XXI веке темп развития науки о ДНК и в еще большей степени – темп проникновения этой науки и основанных на ней новых технологий в повседневную жизнь. В результате СПИД перестал означать смертный приговор, огромные успехи достигнуты в области профилактики сердечно-сосудистых заболеваний. ДНК произвела подлинную революцию в криминалистике. С расшифровкой генома человека мы вступили в постгеномную эру.

Совсем недавно появилась подлинно революционная технология редактирования генома в живой клетке, сулящая как возможность полного искоренения многих заболеваний, уносящих множество жизней, таких как малярия, но и грозящая человечеству многими опасностями. Невероятный прогресс происходит на наших глазах в области методов терапии рака, в особенности в сфере иммунотерапии. Обо всем этом и о многом другом рассказано в новом издании книги.

Эта книга не могла бы быть написана без постоянной помощи и поддержки, которую я ощущал со стороны моей ныне покойной жены Аллы Воскобойник (1940–1985) в период подготовки первой версии книги, послужившей основой для последующих вариантов. Особой благодарности заслуживает В. К. Черникова, которая была редактором исходной версии и которая обучила меня секретам популяризации науки. Редактор издательства «Наука» Л. А. Панюшкина сделала очень много для публикации первых двух версий книги по-русски. Английские издания книги были бы невозможны, если бы мой друг Лев Ляпин не вложил свою душу в работу над переводом. Я глубоко признателен Чарлзу Дорингу, Эду Иммергуту и Кристине Иризарри за помощь в подготовке первого английского издания нью-йоркским отделением VCH. Лиза Адамс (книжное агентство Garamond, Ньютон, Массачусетс) взяла на себя труд быть моим книжным агентом и обеспечила успех второго английского издания. Я благодарен «ПостНауке» и ее лидеру Ивару Максутову за упорство и терпение, проявленное при переговорах со мной и с издательством «Альпина нон-фикшн», приведших к настоящему изданию.

    M. Д. Франк-Каменецкий,
    сентябрь 2016 года,
    Бостон, США

1

От новой физики к новой биологии

Потрясающие вещи происходят в биологии. Мне кажется, Джим Уотсон сделал открытие, сравнимое с тем, что сделал Резерфорд в 1911 году.

    Из письма Макса Дельбрюка Нильсу Бору от 14 апреля 1953 года

1930-е годы

В первой трети ХХ века наиболее значительные, революционные преобразования происходили в физике. Создание теории относительности и квантовой механики до самого основания потрясло эту старую науку, дав ей новый, неслыханной силы импульс к дальнейшему развитию как вглубь, в поисках универсальных физических законов, так и вширь, в смежные области.

Одной из главных вех на пути создания новой физики было открытие Резерфордом в 1911 году атомного ядра. Само существование атома Резерфорда находилось в вопиющем противоречии с основными законами классической физики. На смену старой физике пришла новая, квантовая физика, которая призвана была объяснить устойчивость атомов и их удивительные линейчатые спектры.

Эта теория, разработка которой была начата Планком, Эйнштейном и Бором, нашла замечательно ясную формулировку в 1926 году в виде знаменитого уравнения Шрёдингера. Квантовая механика не только позволила физикам решить все головоломки, которые накопились в области атомных спектров. Она поставила на прочный теоретический фундамент всю химию. Наконец-то был понят сокровенный смысл атомного номера в таблице Менделеева! Стал ясен истинный смысл валентности, выяснена природа химической связи, скрепляющей атомы в молекулах.

К началу 1930-х годов у физиков появилось ощущение всемогущества. Итак, с атомами все ясно, с молекулами тоже, что там еще? Ага, непонятно, как устроено атомное ядро. Занялись ядром. «Ну, здесь вряд ли есть работа на всех, – считали лидеры. – Надо бы придумать что-нибудь покрупнее». И их взоры обратились к святая святых, к тому, о чем физики раньше не могли и помышлять, – к самой жизни. Не поможет ли новая физика разгадать тайну жизни? Или, может быть, наоборот, окажется, что жизнь противоречит квантовой механике, и тогда придется опять изобретать какие-то новые законы? Это было бы особенно интересно.

В то время молодой немецкий физик-теоретик Макс Дельбрюк искал себе занятие по вкусу. Он попробовал заняться квантовой химией, потом ядерной физикой. Интересно, конечно, но не очень. И вот, будучи на стажировке в Институте Бора в Копенгагене, он в августе 1932 года попал на лекцию Бора на международном конгрессе по световой терапии. Лекция называлась «Свет и жизнь». В ней Бор поделился своими мыслями о проблеме жизни в связи с последними достижениями квантовой механики. И хотя Дельбрюк в то время был полным профаном в биологии, лекция Бора так его вдохновила, что он твердо решил посвятить себя этой науке. Вернувшись в Берлин, Дельбрюк стал искать контакты с биологами. Ему повезло. В это время в Берлине работал русский генетик Николай Владимирович Тимофеев-Ресовский.

Дельбрюк стал собирать у себя дома друзей-физиков. Он приглашал Тимофеева-Ресовского, и тот часами обучал их своей науке – генетике. Рассказывая, Тимофеев-Ресовский, по своему обыкновению, бегал из угла в угол, словно тигр в клетке. Он говорил о математически строгих законах Менделя, управляющих наследственностью. О генах и о замечательных работах Моргана, доказавших, что гены расположены цепочкой в хромосомах – маленьких червеобразных тельцах, находящихся в клеточных ядрах. Он говорил о плодовой мушке дрозофиле и о мутациях, т. е. об изменениях генов, которые можно вызвать рентгеновскими лучами. Этим последним вопросом он как раз занимался вместе с физиком-экспериментатором Циммером.

Дельбрюка крайне заинтересовала их работа. Вообще, в генетике было столько созвучного квантовой механике, что дух захватывало. Ведь квантовая механика принесла в физику дискретность, скачкообразность. Она также заставила серьезно относиться к случайности. И вот оказывается, что биологи тоже обнаружили дискретную неделимую частицу (ген), которая случайно переходит из основного состояния (генетики называют его «диким типом») в «возбужденное», «мутантное» состояние.

Что же такое ген? Как он устроен? Об этом часто спорили на вечерах у Дельбрюка. Тимофеев-Ресовский говорил, что, вообще-то, этот вопрос мало интересовал генетиков. Для них ген был тем же, чем для физиков электрон, – элементарной частицей наследственности.

«Вот, я вас спрошу, – сказал как-то Тимофеев-Ресовский, когда от него особенно настойчиво требовали ответа на вопрос об устройстве гена, – из чего состоит электрон?» Все рассмеялись. «Вот видите, так же смеются генетики, когда их спрашивают, из чего состоит ген». «Вопрос о том, что такое ген, выходит за рамки генетики, и его бессмысленно адресовать генетикам, – продолжал Тимофеев. – Вы, физики, должны искать ответ на него».

«Ну, все же, – настаивал Дельбрюк, – неужели нет никаких гипотез, пусть чисто умозрительных?» Тимофеев-Ресовский задумался на минутку и воскликнул: «Ну, как же! Мой учитель Николай Константинович Кольцов считает, что ген – это полимерная молекула, скорее всего, молекула белка». «Ну и что это объясняет?» – длинный Дельбрюк прямо-таки кричал на широкоплечего, могучего Тимофеева-Ресовского. «От того, что мы назовем ген белком, мы поймем, как гены удваиваются? Ведь главная-то загадка в этом! Ты же сам рассказывал нам, как в роду Габсбургов из поколения в поколение переходила характерная форма губы? Что делает возможным столь точное копирование генов в течение веков? Каков механизм? Разве химия дает нам такие примеры? Во всяком случае я никогда ничего подобного не слышал. Нет, тут нужна совершенно иная идея. Тут действительно таится загадка. Великая загадка. Возможно, новый закон природы. Сейчас главный вопрос – как к этому подступиться экспериментально».

Благодаря Тимофееву-Ресовскому Дельбрюк стал неплохо разбираться в генетике. Главное, его больше не смущала эта дьявольская терминология, как будто специально придуманная, чтобы отпугивать непосвященных. Раньше, когда ему случалось слушать выступления генетиков, он недоумевал, зачем им понадобилось придумывать специальный, тарабарский язык. Уж не жулики ли они? Ведь это уголовники изобретают свой особый жаргон, чтобы их преступные намерения не были понятны окружающим.

Знакомство с Тимофеевым-Ресовским изменило его отношение к генетикам. И даже знаменитая фраза, которой генетики особенно любят поражать непосвященных, «рецессивный аллель влияет на фенотип, только если генотип гомозиготен», стала казаться ему не только кристально ясной, но и прямо-таки красивой. «Черт возьми, – думал он. – А ведь и вправду иначе-то не скажешь!»

Фаговая группа

Великая тайна, скрывавшаяся за коротким словом «ген», окончательно пленила Дельбрюка. Как происходит удвоение или, опять-таки на жаргоне, репликация генов при делении клеток? В особенно сильное возбуждение пришел Дельбрюк, когда узнал о существовании бактериальных вирусов или, как их чаще называют, бактериофагов (буквально – «пожиратели бактерий»).

Эти удивительные частицы, которых и живыми-то не назовешь, вне клетки ведут себя просто как большие молекулы – из них даже выращивают кристаллы. Но когда вирус попадает в клетку, то через 20 минут клеточная оболочка лопается, и из нее вываливается сотня абсолютно точных копий исходной частицы. Дельбрюка осенило, что на бактериофагах гораздо легче будет изучать процесс репликации (удвоения генов), чем на бактериях, не говоря уже о животных; возможно, удастся понять наконец как устроен ген. «Вот он – ключ к разгадке, думал Дельбрюк. – Это очень простое явление, гораздо более простое, чем деление целой клетки. Здесь нетрудно будет разобраться. В самом деле, надо посмотреть, как внешние условия будут влиять на воспроизводство вирусных частиц. Надо провести эксперименты при разных температурах, в разных средах, с разными вирусами».

Так физик-теоретик превратился в биолога-экспериментатора. Но мышление – мышление осталось чисто физическим. А главное – цель. Во всем мире не было другого человека, который занимался бы вирусами с единственной целью – раскрыть физическое строение гена.

В 1937 году Дельбрюк покинул нацистскую Германию. В этот знаменательный во многих отношениях год Рокфеллеровский фонд начал субсидировать работы по применению физических и химических идей и методов в биологии. Распорядитель фонда Уоррен Уивер посетил Берлин и предложил Дельбрюку переехать в США, чтобы целиком посвятить себя проблеме репликации бактериофагов. Уивер, сам получивший физико-математическое образование, ясно понимал значение работ, проводимых Дельбрюком. (Кстати, это он первым назвал новую область науки, финансовую поддержку которой стал оказывать Рокфеллеровский фонд, молекулярной биологией.) Разумеется, Дельбрюк поспешил воспользоваться предоставленной ему возможностью, так как жизнь в Германии становилась просто невыносимой.

В Америке Дельбрюк собрал вокруг себя горстку энтузиастов, заразившихся его идеей изучения природы наследственности на бактериофагах. Так возникла «фаговая группа». Шли годы, и участники фаговой группы все больше и больше узнавали о том, как протекает фаговая инфекция и как процесс воспроизведения фагового потомства зависит от внешних условий и т. д. Было проведено много замечательных исследований, в особенности в области изучения мутационного процесса у бактерий и бактериофагов. Именно за работы этого периода много лет спустя Дельбрюк был удостоен Нобелевской премии, и я подробно обсуждаю его важнейшую работу этого периода в главе 6. Но все эти исследования, казалось, даже не приближали к решению основной проблемы: проблемы физической природы гена.

Как часто бывает в науке, люди, объединившиеся для решения большой и очень важной задачи, постепенно занялись скрупулезным изучением частных вопросов, сделались маститыми специалистами в той или иной узкой области, но перестали видеть исходные цели. Так путники видят издалека сияющие горные вершины, но по мере приближения к ним попадают в лесистые предгорья, откуда этих вершин уже не видно. К тому же эти леса изобилуют ягодами, грибами и прочими маленькими радостями.

Если долго бродить по предгорьям, то виденные издалека снежные вершины постепенно начинают казаться миражом. Да, скорее всего, это были лишь облака, похожие на снежные горы. Но если это и в самом деле были горы, зачем туда спешить? Ведь здесь, в почти нехоженых лесах, так хорошо. Для того чтобы путники вновь вспомнили о главной цели, нужен зычный голос лидера.

И такой голос прозвучал – это был голос Эрвина Шрёдингера, автора основного уравнения квантовой механики.

Эрвин Шрёдингер

Об истории создания квантовой механики написаны горы научно-популярной и исторической литературы. Центральное место во всех этих книгах по праву занимает исполинская фигура Нильса Бора. Но возьмите любой учебник по квантовой механике. Вы увидите, что уравнение Шрёдингера – альфа и омега этой науки. Безусловно, квантовая механика, как и любая другая наука, создавалась усилиями многих замечательных ученых. Несомненно, на Шрёдингера радикальное влияние оказала гениальная догадка де Бройля о волнах материи. Все это так. Но решающий шаг сделал все же Шрёдингер. Он собрал воедино все накопленное до него, чтобы совершить скачок замечательной интеллектуальной смелости и силы.

Хотя имя Шрёдингера не столь известно широкой публике, как имена Эйнштейна и Бора, оно глубоко почитается в кругах физиков и химиков. В 1944 году вышла в свет его небольшая книжка под броским заголовком «Что такое жизнь?», в которой обсуждалась связь между новой физикой и генетикой. Поначалу книга не привлекла почти никакого внимания. Шла война, и большинство тех, кому адресована была эта книга, с головой ушли в научно-технические проблемы, от решения которых во многом зависел исход борьбы с гитлеровской Германией.

Но когда война кончилась, появилось много специалистов, особенно среди физиков, которым надо было все начинать с начала, снова искать себе место в мирной науке, – вот для них книга Шрёдингера оказалась как нельзя кстати.

1 2 3 >>
На страницу:
1 из 3

Другие электронные книги автора Максим Франк-Каменецкий