У некоторых моих читателей возникло впечатление, что конечная математика отменяет, например, ?, e, уравнения Максвелла, теорему Пифагора, и т. д. В связи с этим, напомню, что, как уже отмечалось, более общая теория не отменяет менее общую, но говорит, что менее общая теория является хорошим приближением только при каких-то условиях.
Есть два уровня понимания ? – как учили в школе и как учили в институте. В школе – что это отношение длины окружности к диаметру. А что такое окружность – это множество точек находящихся на расстоянии R от центра. А что такое точка – некое умозрительное понятие, в природе точек нет и непрерывных кривых тоже нет. Если мы, например, нарисуем на бумаге, якобы, непрерывную кривую и посмотрим на нее в микроскоп, то увидим, что на самом деле кривая сильно разрывна т.к. состоит из атомов, точек на ней нет и т.д. Поэтому понятия диаметра окружности и ее длины – чисто умозрительные. А почему тогда уравнения Максвелла, теорема Пифагора, дивергенция, дифуры и т.д. хорошо работают? Или например, когда мы описываем воду в океане уравнениями гидродинамики, то это хорошо работает. Потому что в приближении когда пренебрегаем размерами атомов и представляем вещество как нечто непрерывное, то в этом приближении есть бесконечно малые, можно дифференцировать и т.д.
Теперь о том как учили в институте. Все понятия типа ?, и е не должны исходить из наших геометрических представлений, а только из матанализа. Здесь ВСЕ функции которые мы учили ОПРЕДЕЛЯЮТСЯ их разложением в ряд Тэйлора. Например, exp(x) определяется своим рядом Тэйлора, cos(x), sin(x) – своими рядами Тэйлора и т. д., а е определяется бесконечным рядом Тэйлора для exp(1). Отсюда сразу следует, что exp(ix) = cos(x) + isin(x). А если мы возьмем ряд Тэйлора для arccos(x) или arcsin(x), то ? =arccos(-1) или ? =2arcsin(1), т. е., ? определяется своим бесконечным рядом. Формула exp(2i?)=cos(2?)+isin(2?)=1 получается только из манипуляций с бесконечными рядами Тэйлора. Поэтому если думать, что в ПРИНЦИПЕ можно посчитать сколько угодно знаков для ? и е, то можно считать эти знаки до посинения. А если мы все же согласимся с тем, что, например, число атомов во вселенной конечно и нельзя построить компьютер с бесконечным числом бит, то придется признать, что ? и e не такие фундаментальные как думают. Квантовая теория полностью изменила наше мировосприятие. В ней нельзя сказать, что какая-то величина "на самом деле" существует, но никак не может проявиться – если она не может проявиться – то значит она не существует.
Так что, когда переходим к пределу p??, h?0 и пренебрегаем размерами атомов, то стандартный смысл дифференциальных уравнений, ?, е и т. д восстанавливаются.
11.5. Гравитация как кинематическое следствие конечности мира
В нерелятивистской классической механике, закон всемирного тяготения получается, если потенциальную энергию взаимодействия двух частиц с массами m
и m
выбрать в виде – Gm
m
/r, где r – расстояние между частицами, а G – гравитационная постоянная. В ОТО закон всемирного тяготения получается в частном случае когда есть две нерелятивистские частицы. В квантовой гравитации пытаются объяснить гравитацию как следствие обмена виртуальными гравитонами. Эта теория еще не закончена (и непонятно, будет ли когда-либо закончена) т.к. она неперенормируемая и, по крайней мере в существующих подходах, непонятно как в ней устранить расходимости.
Стандартная догма такая, что гравитация – четвертое взаимодействие, которое надо объединить с сильным, электромагнитным и слабым взаимодействием. Сильное взаимодействие – обмен виртуальными глюонами, электромагнитное – обмен виртуальными фотонами, слабое – обмен виртуальными W и Z бозонами, а гравитационное – обмен виртуальными гравитонами. Как описано в параграфе 9.2, считается, что наблюдение двойных пульсаров дает косвенное подтверждение существования гравитонов, а недавний эксперимент LIGO – прямое. Однако, как отмечено в этом параграфе, такие утверждения очень проблематичны.
Мой подход к гравитации основан на следующих принципах. Во-первых, как описано в параграфе 9.6, алгебра операторов более фундаментальна чем пространство. Во-вторых, как описано в параграфе 11.2, де Ситтер симметрия более фундаментальна чем Пуанкаре симметрия. Наконец, как описано в параграфе 11.4, фундаментальная квантовая теория должна строиться над конечной математикой.
Рассмотрим вначале теорию, основанную на обычной алгебре де Ситтера, т. е., без привлечения конечной математики. Пусть есть две свободные нерелятивистские частицы с массами m
и m
. В Пуанкаре инвариантной теории масса такой двухчастичной системы равна (в системе единиц c=1)
M=m
+ m
+ q
/2m
где q – относительный импульс, а m
=m
m
/(m
+m
) – приведенная масса. Поэтому масса двухчастичной системы зависит только от относительного импульса, но не от расстояния r между частицами и не может быть меньше чем m
+ m
. В частности, в таком подходе нельзя получить гравитационную поправку —Gm
m
/r к массе. В анти-де Ситтеровской симметрии масса двухчастичной системы тоже не может быть меньше чем m
+ m
и гравитационную поправку к массе тоже получить нельзя.
Но в теории инвариантной относительно алгебры де Ситтера so(1,4)
M=m
+ m
+ q
/2m
+V(r,q)
где V(r,q) – некоторая функция, которая зависит от квантового состояния двухчастичной системы. В частности, нет закона, запрещающего такие состояния, что V(r,q)= – Gm
m
/r. В этом случае константа G не берется извне, а должна быть вычислена. Поэтому проблема заключается в том, чтобы понять почему для квазиклассических состояний такое соотношение имеет место.
Как я отмечал выше, вера в то, что гравитация – обмен гравитонами, возникла из аналогии с теорией частиц. Однако, гравитация известна только на макроскопическом уровне и думать, что здесь будут работать те же механизмы, что и в теории частиц – далекая экстраполяция. Кроме того, думать, что на макроскопическом уровне оператор координаты имеет такой же вид как в атомной физике и теории частиц – тоже далекая экстраполяция. В своих работах я показываю, что на макроскопическом уровне оператор координаты не может быть таким как в микроскопической физике. Я предлагаю другой оператор координаты и тогда в квазиклассическом пределе и в нерелятивистском приближении масса двухчастичной системы равна
M=m
+ m
+ q
/2m
-Gm
m
(1/?
+1/?
)/[(m