Оценить:
 Рейтинг: 0

Популярно о конечной математике и ее интересных применениях в квантовой теории

Жанр
Год написания книги
2023
Теги
<< 1 ... 3 4 5 6 7 8 9 10 11 ... 37 >>
На страницу:
7 из 37
Настройки чтения
Размер шрифта
Высота строк
Поля

Но дополнительный толчок к де Ситтеру дал разговор с моим родственником и тогдашним начальником Эдиком Мирмовичем. Как-то он рассказал мне о своей идее, что фундаментальными физическими величинами являются угловые моменты. Я пытался понять, что он имел в виду. Помню я ему сказал, что в группе Пуанкаре 10 генераторов, из них 6 описывают обычные и Лоренцевские вращения, но остальные 4 – энергия и импульс – уже не вращения. Спросил, имел ли он в виду де Ситтера. Здесь все 10 генераторов – угловые моменты. Из них 6 – такие же как в Пуанкаре, а остальные 4 при контракции де Ситтера в Пуанкаре переходят в энергию и импульс. Так что на квантовом уровне эта идея – как раз то, что написано в статье Дайсона.

После этого разговора, у меня появилась надежда, что удастся заниматься де Ситтером не только в свободное от работы время, но и в рабочее время. Увы, это оказалось только надеждой и не буду описывать почему. Но удалось опубликовать несколько статей в журнале Journal of Physics A: Mathematical and General, который тогда был очень приличным, а теперь стал кондовым (см. ниже). Пожалуй, наиболее важный результат такой. В духе знаменитой работы Вигнера, элементарные частицы описываются неприводимыми представлениями группы симметрии. Т.е., в Пуанкаре инвариантной теории это представления группы Пуанкаре, а в де Ситтер инвариантной теории – представления группы де Ситтера. Еще более точно, в духе идеи Л.А. Кондратюка, надо рассматривать не представления групп, а представления соответствующих алгебр Ли.

В представлениях алгебры Пуанкаре спектр оператора энергии либо строго положителен либо строго отрицателен. Первые представления ассоциируют с частицами, а вторые – с античастицами. Но в so(1,4) алгебре де Ситтера одно неприводимое представление содержит состояния как с положительными так и с отрицательными энергиями. В предельном переходе R?? одно неприводимое представление алгебры so(1,4) разбивается на два неприводимых представления алгебры Пуанкаре для частицы и ее античастицы. Поэтому, с точки зрения симметрии де Ситтера, сами понятия частицы и античастицы только приближенные. И законы сохранения электрического заряда, барионного и лептонных квантовых чисел могут быть только приближенными. Сейчас они хорошо работают потому что на данном этапе эволюции Вселенной величина R очень большая. Но если Вселенная произошла из чего-то малого, то на ее ранних стадиях R не было большим и все эти законы сохранения не имели места. Возможно, что объяснение так наз. проблемы барионной асимметрии Вселенной как раз такое. В любом случае, этот пример показывает, что, всегда когда можно, надо иметь дело с более общей теорией, даже если кажется, что менее общая теория является достаточным приближением.

11.3. О размерностях

Прежде чем описывать мой подход основанный на конечной математике, сделаю такое замечание. В физике, основанной на конечной математике, все физические величины могут быть только дискретными. В такой ситуации непонятно, имеют ли смысл размерности физических величин и связь между различными единицами измерения. Размерности существуют уже 300 лет или больше и о них по-прежнему много говорят. Но квантовая теория и релятивизм явно намекают (хотя даже в учебниках это не пишут), что на размерности может быть другой взгляд. Например, квантовая теория говорит, что угловой момент может быть только целым или полуцелым в единицах h. Исторически сложилось так, что угловой момент измеряют в единицах m·kg/sec. Но это необязательно. На фундаментальном уровне угловой момент – просто целое или полуцелое число. Т.е., можно вообще забыть про h. Многие пишут, что работают в системе единиц, где h=1. Это затуманивает т.к. создает впечатление, что мы пересчитываем из одних единиц в другие. А на самом деле это означает, что про h можно забыть. Т.е., переход от квантовой теории к классической – это не h?0, а просто когда угловые моменты очень большие. Этот пример поучителен еще тем, что показывает, что когда дискретная величина большая, то она кажется непрерывной.

Другой пример – релятивизм говорит, что c – фундаментальная константа и что никакая скорость v не может быть больше c (если не учитывать тахионы). Но это означает, что в непрерывной релятивистской теории скорости можно считать безразмерными. Грубо говоря, их можно измерять в единицах v/c. Но на самом деле это означает, что в такой теории скорости должны измеряться величинами меньшими единицы, а про c можно забыть вообще. Тогда переход к нерелятивизму – это не когда c??, а частный случай ситуации когда все v<<1.

Наконец, в де Ситтер инвариантной теории есть только угловые моменты и там все операторы имеют одинаковые размерности – все они безразмерны и массы безразмерны. Де Ситтеровская масса ? и стандартная масса m связаны соотношением (неявно предполагая, что c=h=1) ? =mR, где R – параметр контракции от алгебры де Ситтера в алгебру Пуанкаре. Этот параметр можно назвать радиус де Ситтера (радиус мира), но в общем случае этот параметр не имеет никакого отношения к радиусу пространства де Ситтера; как показано в моих работах, это имеет место только в квазиклассическом приближении. Говорят, что де Ситтер переходит в Пуанкаре в формальном пределе R??. Но на самом это означает, что про параметр длины R можно забыть и формальный переход от де Ситтера к Пуанкаре получается когда де Ситтеровские аналоги обычной энергии и обычного импульса очень большие.

Итак в самом общем подходе, когда мы имеем квантовую теорию с симметрией де Ситтера, никаких размерностей нет вообще, а все физические величины измеряются просто числами.

Обычно считается, что в классической теории нет никаких параметров, в релятивизме появляется c, в квантовой теории h, а в гравитации G, и это три фундаментальные константы. Окунь написал статью про куб физических теорий, где есть куб, вершины которого имеют координаты, определяемые величинами (0,c,h,G) и теория тем более общая чем от больших ненулевых констант она зависит. А самая общая теория – в самой последней вершине куба с координатами (c,h,G). А на самом деле ситуация обратная. В общей теории нет никаких параметров, а в классике есть три параметра – (kg, m, sec). Эти параметры придумали люди много лет тому назад и назвали это системой единиц. Никакого фундаментального смысла в этих параметрах нет, просто так сложилось исторически.

Вывод – понятие единиц измерения – надуманное, оно возникло только в силу исторических причин. Например, можно спросить, почему c=300000km/sec, а не 100000km/sec. Ответ – потому, что мы так выбрали km и sec. Аналогично, не имеет смысл вопрос о том почему (h,R) такие как они есть. Поэтому в рассуждениях о важности той или другой единицы измерения не вижу большого смысла.

Как одно из следствий указанных результатов, отмечу следующее. Как показано в моих работах, в квазиклассическом приближении, результаты квантовой теории с симметрией де Ситтера для космологического расширения формально такие же как и результаты OTO, если ?=3/R^2. Как объяснено выше, вопрос о том почему R такое, а не другое, не стоит т.к. ответ такой: R такое потому что мы хотим измерять расстояния в метрах. Поэтому, в моем подходе, результат для космологического расширения получается без всяких модельных предположений и вопрос о том почему ? такое, а не другое не стоит. Мой подход к космологическому расширению более общий чем подход ОТО т.к. ОТО – чисто классическая теория, а любая классическая теория должна быть следствием квантовой в квазиклассическом приближении. Кроме того, если в ОТО, R – модельно зависимый параметр, то моем подходе нет свободы в выборе R. Поэтому, в моем подходе, космологическое расширение объясняется без всяких модельных предположений и модельных параметров, и, для этого объяснения, dark energy, quintessence и прочая экзотика не нужны.

11.4. Почему конечная математика самая фундаментальная и фундаментальная квантовая теория будет основана на конечной математике

В воздухе всегда была идея, что избежать расходимостей в квантовой теории можно будет только если теория будет основана на конечной математике. Какие-то попытки в этом направлении были, но они не были популярны у физиков. Наверное, одна из основных причин та, что, как правило, физики не знают даже самых азов конечной математики. Математическое образование на физических факультетах исходит из того, что математика нужна физикам только для приложений. А т.к. вся физика, в том числе и квантовая, основана на стандартной классической математике, то и незачем преподавать физикам конечную математику.

Как я отмечал в разделе 9.5, из самого факта существования атомов и элементарных частиц сразу становится очевидным, что стандартное деление не может быть фундаментальным понятием. А значит понятия бесконечно малых, бесконечно больших, непрерывности, дифференцируемости и т.д. могут быть только приближенными, и фундаментальная квантовая теория не должна быть на них основана. Я спрашивал у физиков, согласны ли они с этим. Философия абсолютного большинства физиков такая, что раз стандартная математика работает, но незачем философствовать и придумывать что-то другое, тем более, что ничего другого они не знают.

Такая философия общепринята несмотря даже на то, что проблема расходимостей как возникла в 40х годах 20-го века, так и существует до сих пор. В так наз. перенормируемых теориях эту проблему можно как-то обойти, но в квантовой гравитации и это не удается. Тем не менее, большинство физиков не считают проблему расходимостей серьезной. По их мнению, раз теория дает 8 правильных знаков для аномальных магнитных моментов электрона и мюона, 5 правильных знаков для Лэмбовского сдвига и т.д., то рано или поздно все остальные проблемы тоже решатся при помощи стандартной математики.

Например, Weinberg, который внес большой вклад в QFT, пишет что QFT должна рассматриваться "in the way it is," но в то же время она является "low energy approximation to a deeper theory that may not even be a field theory, but something different like a string theory". Т. е. он признает, что проблемы существуют и думает, что они будет решены в какой-то теории обобщающей QFT, но которая опять-таки будет основана на стандартной непрерывной математике.

Таким образом, получается странная ситуация: все, вроде бы, согласны, что природа дискретна и об этом говорит даже термин "квантовая теория". Но все проблемы теории пытаются решить при помощи непрерывной математики. Т.е., все получается как в анекдоте, который рассказал мне мой друг Толя Штилькинд: "Группа обезьян получила задание достичь Луну. После этого все обезьяны начали карабкаться на деревья. Та обезьяна, которая залезла выше всех, думает, что у нее самый большой прогресс, и она ближе к цели чем остальные обезьяны". Этот анекдот я привел даже в своей монографии [7]. Этот анекдот также содержит мораль, что, чтобы достичь Луну, надо вначале слезть с деревьев. Эту мораль я не привел, считая ее очевидной.

Из сказанного ясно, что у физиков необходимость в конечной математике может возникнуть только в двух случаях: а) они убедятся, что при помощи только стандартной математики проблемы решить нельзя (т.е., пока гром не грянет, мужик не перекрестится); 2) при помощи конечной математики будут получены важные физические результаты, которые не могут быть получены в непрерывной математике.

Как и большинство физиков, я не знал самых основ конечной математики. Чисто случайно, когда мне было около 40, наткнулся на книгу (уже не помню какую), которая показалась мне интересной. Из нее узнал про поля Галуа и удивился, что физики их не знают, хотя их можно преподавать уже в первом или втором классе (например, после того как прошли деление).

Простой пример поля Галуа – множество F

из пяти элементов (0, 1, 2, 3, 4), в котором действия определяются так. Сложение определяется как обычно, но по модулю 5. Например, 1+1=2, 2+2=4 как обычно, но 2+3=0 или 4+4=3. Если a – элемент множества F

, то противоположный элемент b=-a определяется так, что в a+b=0 в F

. Например, – 1=4, – 2=3 и т. д. Так что мы имеем сложение и вычитание. Произведение определяется как обычно, но по модулю 5. Например, 2·2=4, но 2·4=3. Наконец, противоположный элемент

b=1/a определяется так, что a·b=1 в F

. Например, 1/2=3, 1/4=4 и т.д.

Более общий пример поля Галуа – множество F

из p элементов (0,1,2,… p-1), где действия определяются по модулю p. Тогда, если p – простое, то в F

возможны все 4 арифметических действия.

Читатель может сказать, что пример с F

не имеет никакого отношения к реальной жизни, где, например 3+2=5, а не 3+2=0. Но допустим, что физика в нашем мире определяется математикой с полем Галуа F

, где p – очень большое. Т.к. операции в F

определяются по модулю p, то мы можем обозначать элементы из F

не только как (0,1,2,…p-1), но и, например, как (-(p-1)/2,-(p-3)/2,… —1,0,1,…(p-3)/2,(p-1)/2). Этот набор называется набором минимальных вычетов. Тогда все будет как обычно до тех пор пока будем складывать, вычитать и умножать числа, которые по модулю намного меньше p, т.е., при этом существование p не будет чувствоваться, а отличие от обычной математики будет чувствоваться только когда мы имеем дело с числами не намного меньшими чем p.

Но читатель может сказать, что пример с F

тоже нереалистический т.к. здесь деление совсем не такое как обычно. Например, 1/2 в F

– это очень большое число (p+1)/2, что, казалось бы, противоречит здравому смыслу. На это возражение можно ответить следующим образом. Во-первых, как я отмечаю в своих работах, противоречия нет т.к. в квантовой теории пространства состояний проективные. А во-вторых, как отмечено выше, стандартное деление тоже проблематично и поэтому возникает вопрос, будет ли будущая квантовая теория основана не на конечном поле, а на конечном кольце, где есть только три действия – сложение, вычитание и умножение.

Вторая возможность представляется очень привлекательной даже из эстетических соображений. История физики говорит, что желательно вводить наименьшее возможное число понятий и не вводить понятия, которые не имеют фундаментального смысла. В своих первых работах я исходил из того, что конечная квантовая теория должна быть основана на конечном поле, но Metod Saniga написал мне, что случай кольца еще более интересный.

Т.к. в течении многих лет моя жизнь проходила среди физиков, то вначале я не связывал физику над конечной математикой с какой-то философией, и думал, что конечная математика должна рассматриваться только с точки зрения приложений к физике. Первая идея применения конечной математики была такая. Рассмотрим квантовую электродинамику с симметрией де Ситтера и над конечной математикой. Тогда в базисе угловых моментов, неприводимые представления для электрона, позитрона и фотона будут конечными т.к. угловой момент не может превосходить характеристику конечного поля. Это приведет к естественной регуляризации вместо регуляризации Паули-Вилларса и теория автоматически не будет содержать расходимостей.

Однако, потом выяснилось, что такая наивная идея не проходит в связи со следующим. В теории над конечным полем или кольцом частица и ее античастица автоматически принадлежат одному и тому же представлению, и нет представлений для нейтральных частиц. Так что в таком подходе даже фотон не может быть элементарной частицей. Зная менталитет физиков, думаю, что большинство из них сразу скажут, что раз фотон – не элементарная частица, то теория нефизическая.

Выше я описывал пример, когда в стандартной теории (над комплексными числами) с алгеброй де Ситтера so(1,4) понятия частицы и античастицы кардинально меняются. Но в случае алгебры де Ситтера so(2,3) мы по-прежнему имеем представления с положительными и отрицательными энергиями, т.е. можно по-прежнему говорить о частицах и античастицах. Но в случае представлений над конечным кольцом или полем ситуация аналогична той, что получается для so(1,4) и здесь само понятие элементарной частицы кардинально меняется для любых представлений.

Например, раз частица и ее античастица принадлежат одному неприводимому представлению, то переходы частица?античастица не запрещены, но вероятность таких переходов мала, если характеристика поля или кольца большая. Так что, строго говоря, сами понятия частицы и античастицы являются приближенными, и законы сохранения электрического заряда, барионного и лептонного квантовых чисел тоже приближенные. Эти законы хорошо работают потому что в настоящее время характеристика поля или кольца очень большая. Естественно предположить, что на ранних стадиях мира она была намного меньше. Тогда переходы частица?античастица были намного более вероятными и это дает еще одно естественное объяснение так наз. барионной асимметрии мира.

В такой теории нет проблемы бесконечной энергии вакуума и связь между спином и статистикой имеет естественное объяснение. Здесь естественной элементарной частицей может быть Дираковский синглетон. Как показали Flato and Fronsdal, безмассовая частица (например, фотон) может быть построена из двух синглетонов. И еще один интересный момент, который ставит под сомнение существующее понятие элементарной частицы. Даже для симметрии де Ситтера без конечного кольца или поля (а с ними подавно) масса частицы – не размерная величина, а безразмерная. Если для оценки принять, что радиус мира – величина порядка 10

m, то даже масса электрона будет порядка 10

, т.е., громадная величина. Трудно поверить, что частица с такой массой является элементарной.

Все эти свойства физики над конечной математикой описаны в моих работах. Но я думаю, что рано или поздно фундаментальная квантовая физика будет над конечной математикой не только потому, что такая физика будет лучше, а и потому, что сама конечная математика более фундаментальна чем стандартная непрерывная математика. Как показано в моих работах, даже с чисто математической точки зрения, непрерывная математика – это частный вырожденный случай конечной в формальном пределе, когда характеристика поля или кольца в конечной математике стремится к бесконечности. Почему вырожденный? Как показано в моих работах, любой результат стандартной математики в квантовой теории может быть воспроизведен с любой точностью в конечной математике для всех p больших некоторого значения. С другой стороны, когда мы перешли к пределу p??, то все операции по модулю числа потеряны, и стандартная математика не может воспроизвести все результаты конечной математики. Она может воспроизвести только те результаты в которых все числа намного меньше p. Здесь есть аналогия с тем, что нерелятивистская теория является частным вырожденным случаем релятивистской в формальном пределе c??: релятивистская теория может воспроизвести все результаты нерелятивист нерелятивистской с любой заданной точностью при каком-то выборе c. С другой стороны, нерелятивисткая теория может воспроизвести только те результаты релятивисткой в которых все скорости намного меньше c.

В разделе 9.5 я отмечал, что стандартная математика имеет проблемы с обоснованием и, несмотря на попытки многих знаменитых людей, эти проблемы не решены. Теоремы Гёделя о неполноте тоже говорят о том, что стандартная математика несамосогласованна. Но если посмотреть на стандартную математику с точки зрения, что она является частным случаем конечной, то проблем нет. С этой точки зрения стандартная математика может рассматриваться только как аппарат, который во многих случаях (но не всех) дает хорошее приближенное описание, поэтому нет нужды такую математику обосновывать т.к. в конечной математике проблем с обоснованием нет.

Подход основанный на конечной математике является более естественным и с точки зрения, что здесь любые утверждения проверяемы, по крайней мере в принципе. Более того, здесь работает принцип, что любое утверждение является правильным или нет, если есть способ это проверить.

Например, мы хотим проверить, утверждение 10+20=30 правильное или нет. Например, хотим проверить это на компьютере или счетах. Любое счетное устройство может вычислять только по модулю какого-то числа p, которое зависит от объема памяти этого устройства. Например, если p=40, то мы действительно получим, что 10+20=30, но если p=25, то мы получим, что 10+20=5. Отсюда ясно, что любые математические операции (даже 2·2=4) проверяемы только если они по модулю какого-то числа. Стандартная математика – идеализируемый частный случай конечной, в формальном пределе, когда p??.

Хотя стандартная математика – часть нашей повседневной жизни, но большинство людей не осознает, что в ней есть неявное предположение, что ресурсы неограниченны. И в стандартной математике нет принципа, что для любого утверждения его правильность может быть проверена. Например, нельзя проверить, что a+b=b+a для любых натуральных чисел a и b.

То, что любое утверждение должно быть проверяемо – часть Венской школы позитивистской философии, в которой неформальным руководителем был Moritz Schlick. С другой стороны, в философии, которую развивал Karl Popper есть “The Falsification Principle”, и, как говорил Popper, “science is more concerned with falsification of hypothesis than with the verification.” Здесь утверждение, что всегда a+b=b+a считается условно верным до тех пор, пока не найдены такие числа a и b, что a+b?b+a. Ясно, что квантовая теория ближе по духу к Венской школе, а классическая – к философии Popper. Поэтому неудивительно, что в споре Эйнштейна и Бора о квантовой теории Popper был полностью на стороне Эйнштейна.
<< 1 ... 3 4 5 6 7 8 9 10 11 ... 37 >>
На страницу:
7 из 37