Оценить:
 Рейтинг: 3.5

Магия чисел. Математическая мысль от Пифагора до наших дней

Год написания книги
1946
Теги
1 2 3 4 5 6 >>
На страницу:
1 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля
Магия чисел. Математическая мысль от Пифагора до наших дней
Эрик Темпл Белл

Американский математик, исследователь в области теории чисел Эрик Т. Белл посвятил свою книгу истории происхождения математической мысли и разработки численной теории с момента ее зарождения в древности до современной эпохи. Обоснованно и убедительно автор демонстрирует влияние, которое оказала «магия чисел» на развитие религии, философии, науки и математики. Э.Т. Белл рассматривает процесс превращения числа из инструмента счета в объект культуры, сформировавшийся в VI веке до н. э. в школе древнегреческого философа, мистика, физика-экспериментатора и математика Пифагора – главного героя его исследования. Основополагающим моментом учения великого ученого древности стала доктрина о том, что «все сущее есть число». Доктор Белл изучил развитие этой доктрины: ее упадок в XVII веке и блистательное возрождение в современной физике. Автор также представил и проанализировал труды таких гигантов математики, как Галилей, Джордано Бруно, Ньютон.

Эрик Т. Белл

Магия чисел. Математическая мысль от Пифагора до наших дней

Eric Temple Bell

The Magic of Numbers, Whittlesey House, 1946

Глава 1

Прошлое возвращается

Пифагор – объект нашего повествования. Рожденный за пятьсот лет до начала эры христианства, этот гигантский ум наложил отпечаток на пути развития западной цивилизации. В определенном смысле, его идеи сейчас не менее актуальны, чем в то время, когда он жил и когда дал импульс и определил направление развития донаучной истории к построению современной, неведомой ему, научной и технологической культуры.

Мистик, философ, физик-экспериментатор и, прежде всего, математик, Пифагор оказал значительное влияние на идеи современников и предвосхитил научный мистицизм нашего времени. Его гений оказался столь многогранен, что в Средние века даже слепые предрассудки и наиболее бескомпромиссный рационализм вынуждены были отступать перед ним. «Он так сказал». Основополагающим моментом его учения стала мистическая доктрина о том, что «все сущее есть число». В конце XVI века, в связи с возрожденными Галилеем экспериментальными методами в физике, методами, пионером которых за двадцать два века до этого был Пифагор, мистицизм чисел в науке был изжит.

XVII век ознаменовался созданием новой математики Ньютона и Лейбница, призванной упорядочить постоянно меняющийся поток познания, подчинив его строгим рассуждениям. Соединив математику с точным наблюдением и целенаправленными экспериментами, Ньютон с его последователями в XVII и XVIII веках создали современный научный метод для изучения астрономии и физических наук, который в неизменном виде просуществовал до третьего десятилетия ХХ века. Двуединая цель этого метода – суммировать наблюдаемые явления развития планеты с тем, чтобы определить главные закономерности, называемые их первооткрывателями «законами природы». Практически всегда наблюдения и опыты остаются первым и последним аргументом в исследовании. Каким бы разумным и каким бы верным ни казалось умозаключение математиков или иных строго дедуктивных, чисто умозрительных оценок, их нельзя принимать без результатов наблюдений или опытов.

Успехи такого подхода с лихвой перевешивали его поражения на протяжении всего XIX века и победно шагнули в век ХХ. Менее чем за два века применение научных технологий в промышленном производстве продиктовало существенное преобразование западной цивилизации, имевшее большее значение, чем все войны и революции предыдущих тысяч лет.

Попутно с этой эпохальной революцией в материальном мире столь же разрушительные изменения время от времени опрокидывали устоявшееся мировоззрение, из поколения в поколение владевшее умами людей. Вселенная как объект познания науки не всегда была откровением и традицией веры, и даже не всегда тем, что в соответствии с логикой, по общему мнению не ведающей ошибок, считалось фактом. И в этом случае все без исключения абсолютные истины за последние более чем две тысячи лет были тщательно пересмотрены и изучены. Все, что оказалось лишенным позитивного смысла, было безжалостно отвергнуто. Рассуждения, не подкрепленные опытом, больше не считались инструментом познания при освоении материальной части мироздания. Даже в традиционной сфере его

применения стерильность умозрительного подхода вызывала сомнения. Какую ценность для человечества представляют истины, оградившие себя от объективного исследования? Утверждения, что истины, отличные от научных, которые существовали в сфере вечного бытия и были недоступны для науки, имеющей ограниченные возможности, «подавили» лозунгом: «Опыт – критерий истины». Потом, около 1920 года, у прогрессивных ученых начали появляться сомнения.

К середине 1930-х годов несколько выдающихся и уважаемых физиков и астрофизиков поменяли свои взгляды на диаметрально противоположные. Безбоязненно взглянув в прошлое, они без сомнений большими шагами устремились назад в VI век до Рождества Христова, дабы воссоединиться со своим учителем. Хотя адресованные ему приветствия звучали куда более замысловато, чем любые слова, которыми мог бы пользоваться Пифагор, но говорили они на одном с ним языке. Смысл, сокрытый в рафинированной системе обозначений и замысловатых метафорах, не изменился за двадцать пять веков: «Все сущее есть число». Он понял их.

Возврат от опыта к умозаключениям, восторженно принятый отдельными философами и учеными, другие встретили с сожалением. Но главенство факта в новом подходе даже не обсуждалось. Либо это новые лидеры вернулись назад к Пифагору, чтобы подтвердить его правоту на протяжении прошедших веков, либо он сам перескочил через время, чтобы подвигнуть их к осознанию того, что современный научный подход Галилея и Ньютона лишь простое заблуждение.

Для начала исследовательское паломничество в прошлое бесстрашных ультрамодернистов задержалось в тени Платона. Быстро осознав, что во всем, что имело отношение к мистике чисел, Платон сам являлся лишь учеником, они отправились на поиски учителя. За два века до рождения Платона Пифагор поверил сам и учил других, что чистый разум, не подкрепленный опытом, в состоянии проникнуть в суть любых явлений, при этом наблюдение и опыт могут стать лишь ловушкой для излишне доверчивого ума. А из всех языков, в которых постоянные знания противостоят изменчивым точкам зрения, только язык чисел и есть та единственная опора, на которую можно смело полагаться чистому разуму.

«Он так сказал», – и ныне, спустя двадцать пять веков после смерти, он продолжает жить в языке нарождающейся науки. Ярый сторонник теории реинкарнации и переселения душ, Пифагор мог бы в конце концов найти подходящую обитель среди абсолютных абстракций теоретической физики XX века. «За свое вероотступничество от единственно верной истины, – признавался бы он сегодня, – я был обречен проживать жизнь за жизнью в ужасных догмах ложных философов и еще более ужасающих грезах вульгарных нумерологов. Но теперь я свободен от пут Колеса рождений. Когда, чтобы понять закономерности музыкальных пауз, я экспериментировал, полагаясь на руки и слух, я согрешил против божественного духа истины, осквернив душу чувственным восприятием. Затем передо мной предстали числа, и я понял, что все время до того, как я осознал мир чисел, я предавал лучшую часть самого себя. Провозглашая истину, что все сущее и есть число, я стремился очистить душу и освободиться от Колеса рождений. Но этого оказалось недостаточно. Мало кто уверовал, а большинство и вовсе не поняли. Дабы искупить свой грех, я прошел сквозь чистилище ошибок и ложных утверждений, когда имя мое восхваляли глупцы и фигляры. Теперь же я вижу конец своих мучений в лучах нового просвещения, которое существовало задолго до моего появления как Пифагора. Обман чувств больше не будет вводить человечество в заблуждение. Наблюдение и эксперимент, лживые пособники чувственного опыта, исчезнут из человеческой памяти, и останется один только чистый разум. Все сущее есть число».

Пророчество гения стало менее абстрактным и более совместимым с научными достижениями ХХ века. Говоря языком физиков-математиков и астрофизиков, он углубился в детали. «Я уверен… что все законы природы, которые принято относить к фундаментальным, могут быть выведены исключительно путем эпистемологического анализа». Слегка отвлекшись, он напоминает нам, что эпистемология есть раздел метафизики, который занимается теорией человеческого познания. Дабы избежать возможного недопонимания применяемых им терминов, он детально излагает собственное еретическое кредо. «Разум, незнакомый с устройством мира, но которому ведом механизм познания, с помощью которого человеческий ум истолковывает содержание чувственного опыта, сумеет постичь все знания в области физики, которые мы приобрели опытным путем. Он не станет копаться в конкретных событиях или объектах нашего опыта, но он докопается до сути обобщающих тенденций, которые мы основываем на них. Например, он предположит факт существования и характеристики натрия, хотя не сумеет определить размер Земли».

Если Пифагор (говоря это в 1935 году через чревовещателей, в частности сэра Артура Эддингтона, лидера обратного хода в прошлое) оказался прав, ученые-экспериментаторы, начиная с Галилея и Ньютона, напрасно столь много потрудились, дабы познать очевидное и провозгласить давно известное. Если утверждение, что опыт может дать ответ на любые вопросы, ложно, тогда справедливо утверждение, как заявляли отдельные древние ученые, что разум может дать ответы на все вопросы или, как считали последователи Пифагора, почти на все. Поскольку, как нас только что предостерегли, разум человеческий может оказаться бессилен в определении диаметра Земли только на основе всей заложенной в него информации. Но этот недостаток практически пренебрежимо малый в сравнении со способностью предвидеть существование и характеристики химического элемента «исключительно путем эпистемологического анализа».

Правильно настроив ход своих мыслей, сидя в пустой комнате и не вставая со стула, эпистемолог может заново открыть для самого себя все, что за три века со времен

Галилея и Ньютона ученые-естествоиспытатели установили с помощью наблюдения и опыта в области «фундаментальных законов» механики, теплообмена, света, звука, электричества и магнетизма, электроники, строения вещества, химических реакций, движения небесных тел и распределения галактик в космическом пространстве. И в результате таких же чисто умозрительных рассуждений мыслитель-эпистемолог сумеет постичь проверяемую гипотезу об уникальном явлении, которое до сих пор остается малоизвестным для естествознания, например о внутреннем движении спиралевидных туманностей.

Если хоть часть из этих впечатляющих утверждений подтвердится, возврат к пифагореизму в ХХ веке запомнится на десятки тысяч лет, как рассвет наступающей эпохи постоянного просвещения и конец долгой ночи ошибок, которая спустилась на западную цивилизацию в XVII веке. Дорогостоящая аппаратура наших лабораторий и обсерваторий будет разрушаться и ржаветь, за исключением, может быть, нескольких реликвий, внушающих ужас, помещенных в качестве экспонатов во Всемирном музее ошибок человечества. А над входом борцы за здоровую психику и здравомыслие начертали бы прописные истины, которые раскрепостили человечество: «Опыт ничего не дает. Только разум отвечает на все вопросы». Чтобы как-то уравновесить сказанное, те же блюстители расписали бы фронтон Храма знаний и мудрости универсальной формулой и суровым предупреждением: «Все сущее есть число. И да не переступит порог мой всякий, кто несведущ в арифметике».

Но все это пока так и остается в спокойной безмятежности грядущего золотого века, пока мы, к своему несчастью, должны продолжать высекать искры из огнива и плодить ошибки современности. Дабы облегчить свою участь, мы можем вернуться в прошлое на часок-другой, чтобы прочитать там об убеждении в спокойствии нашего настоящего и надежде на наше будущее.

О чем мы спросим прошлое? Многочисленные интересные вопросы напрашиваются сами собой. Как такие же люди, как мы с вами, вообще пришли к такой глупости, как вера в нумерологию? И что заставило уважаемых ученых ХХ века от Рождества Христова черпать свою философию познания из VI века до Рождества Христова? Правы ли нумерологи, поборники магии чисел, правы все эти века, а большинство думающего человечества заблуждалось?

Что касается истории вопроса, то все началось веков двадцать шесть тому назад с простейшей арифметики и геометрии уровня начальной школы. Ничего такого, что не смог бы понять нормальный ребенок двенадцати лет от роду. Что же касается вопроса, кто прав, а кто ошибается, то физик или инженер более склонен к математическим доводам, чем математик или логик. Единицы среди инженеров или физиков рискнут посвятить свой блестящий ум небольшому, но обличающему трактату о ненадежности принципов логики. Математик же способен на это. Логика в своем наиболее надежном проявлении и есть математика. И хотя математическое мышление, как и любое другое, имеет жесткие пределы, оно остается наиболее мощным. Но поскольку впечатление о том, будто математика создает что-то из ничего, в то время как это совсем не так, ей приписывают сверхъестественные силы даже сами математики и логики.

Когда сложное математическое доказательство заканчивается захватывающим пророчеством, впоследствии подтверждаемым наблюдением и опытом, физику вполне простительно ощущение соучастия в сотворении чуда. Когда же маститый математик понимает, что совершил открытие, к которому совсем не стремился, он вполне может на какой-то момент уверовать в то, во что Пифагор верил всю свою жизнь, и может даже повторить вслед за именитым английским математиком Годфри Харолдом Харди, признавшимся в своей вере: «Верю, что математическая реальность существует вне нас, а наше предназначение состоит в том, чтобы открывать и описывать ее, что теоремы, которые мы доказываем и которые высокопарно именуем своими «достижениями», просто есть наши записи своих наблюдений. И этой точки зрения придерживались в той или иной форме многие очень известные философы начиная с Платона…»

Оправившись от изумления от своей собственной гениальности, среднестатистический математик ХХ века мог начать сомневаться, по крайней мере, в практичности верования Платона, особенно если случайно узнал об имевших место открытиях в философии математики с конца XIX века. Обуреваемый сомнениями может даже согласиться с известным американским геометром Эдвардом Казнером в том, что «реальность Платона» в математике была давным-давно ниспровергнута математиками, лишенными мистического подхода, и сильно удивиться, что рационально мыслящие индивиды вообще могли когда-либо этим увлечься. Вот как он сформулировал свою мысль: «Мы перешагнули через мнение, будто математические истины существуют независимо и вне нашего сознания. Даже странно, что такое мнение когда-либо существовало. Но именно в это верил Пифагор… и Декарт, наряду с сотней других великих математиков до наступления XIX века. Ныне математика свободна, она сбросила свои цепи. Каким бы ни было ее существование, мы признаем его свободным, как мышление, цепким, как воображение».

Не нам судить о двух школах познания. Отметим только, что каждый из процитированных ученых опубликовал свое мнение в 1940 году. Даже в суде было бы трудно столкнуться с более острыми разногласиями между компетентными экспертами. Подобное неразрешимое противоречие во взглядах отделяет современных последователей пифагорейской школы от представителей старой школы, продолжающих упорствовать в том, что достоверное знание материального мира не может быть признано без наблюдения и опыта.

Моей единственной целью в последующих главах является попытка отследить, как эти различия во взглядах уживаются в науке. И хотя сама тема есть число, не потребуется более серьезных знаний, чем простая арифметика, для понимания сюжетной линии. Случайное упоминание некоторых очевидных положений о свойствах прямых линий, наподобие тех, которые изучают школьники младших классов, никого не должно пугать своим названием – геометрия. Важны не эти банальные истины из курса начальной школы. Важно, какие причудливо сверхъестественные выводы из этих банальностей делают люди не менее образованные, чем мы. Дабы исключить превращение нашего путешествия в прошлое в поездку через долину древних скелетов, нам необходимо, насколько это возможно, познакомиться с великими людьми, которые ответственны за наши современные крайне разнообразные и противоречивые точки зрения. Почти все, о ком пойдет речь, хорошо известны, а их вклад в развитие цивилизации общепризнан. Их работы знают меньше, но они-то нам и интересны, поскольку представляли значительно больший интерес, чем те постулаты, из-за которых многие и вошли в историю. Некоторые имена кому-то покажутся новыми. Их всего около десятка из сотен, оставивших след в магии чисел и во всем, что повлияло на наши попытки мыслить правильно.

Если у кого-то так и не возникло повода установить для самих себя, к чему привели и продолжают вести (через методы, рожденные ими) древние знания о числах, можно просто немного побродить вокруг главных святынь, где находила приют магия чисел по пути из Древнего мира в современный. Время и постоянные изменения в терминологии искривили исторические знания до такой степени, что ядро арифметических истин в центре древних артефактов не всегда заметно случайному наблюдателю. По большей части влияние таких очевидно тривиальных выкладок, как «три плюс семь равно десяти», на философское, религиозное и научное мышление подернуто налетом символизма устаревших попыток создания полноценной картины материального мира. Сколь амбициозны и вдохновляющи ни были бы эти попытки, но они весьма далеки (по крайней мере в плане амбиций) от более ранней борьбы в попытках объяснить место человека языком чисел. У античных пифагорейцев, обладавших весьма развитым воображением, добродетель определялась одним числом, зло – другим. А трудно детерминируемые эфемерные понятия Истины, Красоты, Добра были сублимированы в «идеальные числа» не кем иным, как метафизиком Платоном. И хотя кажется странным, как Пифагору удавалось верить, будто любовь и брак предопределены числами, мы имеем возможность наблюдать подобные верования и сегодня.

Сквозь века древняя магия чисел прокладывала свой путь шаг в шаг с лишенной мистицизма наукой. Если неутомимое исследование чисел поддерживало развитие науки и этим способствовало освобождению от предрассудков и суеверий, оно же и увековечивало старые верования, которые никто, кроме горстки толерантных исследователей, не назовет просвещением. Некогда выделившись из научных исследований, эти упрямые верования давным-давно потеряли свою значимость для ученых. Но вера в то, что числа являются исходным ответом на все загадки физического мира, хотя и трудноуловимым, до сих пор прослеживается в рафинированном варианте математического мистицизма современных пифагорейцев. Наша основная задача будет заключаться в том, чтобы проследить главные этапы продвижения данного неодолимого утверждения в сегодняшнюю действительность из глубокой древности, столь глубокой, что только легенды о ее существовании достигли нашего времени.

Слегка предвосхищая события, отметим, что три категории мыслителей увлеклись сложными теориями жизнеустройства и мироздания, основанными на обманчивой гармонии чисел. Вопреки бытующему мнению математики оказались далеко не первыми, а скорее последними воспринявшими игру чисел всерьез, возможно излишне серьезно. Ближе к истокам нумерологии стоят не математики, а ученые, а еще ближе – священники. Ученым может оказаться примитивный астролог, прочитавший в движении планет значительно больше, чем любой современный астроном сумеет разглядеть. И все же он проявлял себя ученым в том, как пытался привести свои примитивные наблюдения за материальным миром в какую-нибудь рациональную систему.

Что же касается священника, выглядывающего из-за спины ученого, то неугомонные, вездесущие и плодовитые числа напоминают ему легкоузнаваемые россказни. Он и ему подобные веками ведали, что наибольший потенциал магических сил сокрыт в числах. Но только когда большинство человечества восприняло числа в качестве наиболее универсального средства в астрологии, торговле, сельском хозяйстве, астрономии и азах инженерии, появились те, кого ныне величают математиками, кто начал изучать числа ради самих чисел. Их вклад в накопление справедливых познаний сподвиг людей, одаренных большим воображением, на неустанные поиски чудесных взаимозависимостей между числами и их трактовку согласно собственным желаниям. В результате наступил золотой век греческой философии.

К тому времени, когда наиболее многогранные толкователи чисел выработали собственные теории истины и материального мира, плебейские прародители блестящих доктрин конкретных философов-аристократов были уже преданы забвению. Некогда пользовавшаяся заслуженным уважением арифметика стала достоянием математиков и ученых. Одновременно старая магия чисел попала в руки искренних, но впавших в заблуждение фанатиков, чьи помыслы были, без сомнения, праведны, но чьи жреческие подтасовки обычной арифметики едва ли сильно отличались от простого шарлатанства.

В XVII веке, ознаменовавшем прорыв науки, опирающейся на опыт, древняя магия чисел существенно утратила былую популярность. Позднее нумерология практически совсем исчезла из философии, хотя Кант в конце XVIII века частично вернулся к ней, а спустя полвека крайне прогрессивный Комт почти потерялся в превратностях нумерологии. То, что от нее осталось, буйно расцвело на ниве предсказаний удачи. Более странное применение едва ли можно было придумать. Но нумерология не

пропала окончательно. Совсем неожиданно в третьем десятилетии ХХ века заблиставшая и набравшая уважение в ослепительной символике новой физики, древняя нумерология вновь вернулась к полноценной жизни. Число «взяло в свои руки бразды правления» в изучении бескрайнего и обширного космоса, превосходящего ограниченные рамки небес, которые Пифагор и Платон могли вообразить. Выполнив резкий разворот, современные последователи Пифагора устремились назад, дабы поприветствовать своего учителя и воздать ему должное.

Глава 2

Жезл фараона

Пока для большинства людей стояла задача поиска пропитания, одежды и крова, только наиболее стойкие находили время задуматься о роли человека в этом мире. Вот почему совсем неудивительно обнаружить доминирование прагматического подхода в большинстве ранних работ в области чисел среди существующих письменных свидетельств. Например, египетский земледелец, живший пять или шесть тысяч лет тому назад, должен был знать, когда следует ожидать ежегодного разлива в долине Нила, и для этого ему требовался заслуживающий доверия календарь.

Даже самый примитивный календарь предполагает знакомство с числами, более глубокое, чем демонстрируют самые лучшие из обыкновенных людей. Искусство счета сформировалось не за один день, а многие из полуцивилизованных сообществ так и остановились на цифре десять в попытках пересчитать свои пожитки. Для этих людей все числа свыше полудюжины или около того сливались в единое целое и таяли в бесчисленном множестве. Такие количества имели не большее практическое значение для бездомного кочевника, чем понятие бесконечности – для бухгалтера с Уолл-стрит.

Вместо современного математического понятия «бесконечность» мудрец из небольшого сообщества ограничивался при подсчете расплывчатым определением «много». Этого было вполне достаточно для его магических предсказаний: различие между нищетой и изобилием вполне покрывалось разницей между шестью и десятью, а значимое неизвестное лежало в области между десятью и пятнадцатью. Скорее на глаз, чем путем рассуждений, предсказатель, мало чем отличавшийся от скотовода, определял, имеет ли сообщество достаточно или обладает лишним.

Маловероятно, что мы в один прекрасный день узнаем, когда, где или как человечество научилось не задумываясь считать с легкостью цивилизованного семилетнего ребенка. Едва ли сумеем установить, какие народы первыми освоили искусство счета в полном объеме.

Опираясь только на достоверные факты, можно определенно утверждать, что к 3500 году до н. э. египтяне значительно переросли примитивную неспособность уверенно оперировать большими числами. На жезле фараона тех лет зафиксировано пленение 120 000 человек, захват 400 000 волов и 1 422 000 коз. Эти очень впечатляющие округленные числа предполагают одно из двух. Либо победивший фараон имел богатое воображение и раздутое эго, либо египетские счетоводы были обучены подсчету больших множеств.

Но даже это замечательное умение, как и другие, не менее значимые, не свидетельствует о том, что египтяне за 3500 лет до н. э. знали – последовательность чисел 1, 2, 3, 4, 5… действительно бесконечна. Они вполне могли без должной уверенности полагать, что всегда найдется число, которое будет на единицу больше любого представляемого числа, но они не оставили о том никаких письменных свидетельств. Наоборот, все наши знания о египтянах говорят о том, что египтяне могли полагать, что числа 1, 2, 3… где-то, когда-то достигают своего конца. Должен был случиться рывок мысли более существенный, чтобы концепция бесконечности счета была признана в математике и философии.

Так или иначе, данная запись о 120 000 пленных, 400 000 волов и 1 422 000 коз на жезле фараона действительно раскрыла факт непреходящего значения в эволюции чисел. Мы, которые учимся бойко считать еще до того, как начинаем читать, не придаем значения единственному важнейшему свойству чисел. Потребовалась бы почти сверхчеловеческая проницательность, чтобы понять, когда же впервые это заметили, и, скорее всего, можно предположить, что очень немногие даже из числа самых внимательных исследователей способны заметить это в хвастливом перечислении победителем собственных трофеев. Так случалось со многими фундаментальными открытиями в математике и других науках, проблема данного открытия состоит в его удивительной простоте… когда оно уже сделано.

Проглядывая перечень трофеев, что мог сказать победитель о каждой из трех групп, что было бы справедливо для всех? Он, видимо, мог заметить, что все три состоят из живых существ. Возможно, так оно и было, но тогда он не придал этому особого значения, не отразив этот факт в списке. Как ни странно, он записал и обратил внимание на то, что все три группы живых трофеев (пленные, волы и козы) сопоставимы одним-единственным процессом. Все они могут быть посчитаны.

Если такой подход кажется слишком упрощенным, попробуем воспользоваться иными характеристиками, отличными от чисел, присущими каждой из групп, которые окажутся столь же важными и потенциально полезными. Требуемые характерные черты должны быть полностью независимыми от происхождения единиц учета, объединяемых в несколько групп. Возможно, задача представляется слишком легкой: описать проблему в полном объеме. Подумаешь, несколько множеств материальных предметов, имеющих что-то общее? Каждое множество может быть посчитано. Более того, и победитель об этом, скорее всего, знал; для конечного итога нет разницы, в каком порядке трофеи оказались подсчитаны, не важно, велся ли подсчет одного за другим, семерками, десятками, в любом случае результат был бы одинаков. Маги победителя сумели бы даже убедить своего господина, что один жезл легко превратить в два. Но им никак не удалось показать 1 422 001 козу, если по подсчетам их было только 1 422 000.

Кажущаяся простота подсчета скрывает суть вещей, что делает ее полезной и по-философски гипнотической. Если всему дать имена, то можно говорить об универсальности и неизменности чисел, порожденных счетом. Универсальность всегда права и всегда значима, она давно стала желанной для многих философских течений. Неизменность или отсутствие изменений посреди перемен отвечает запросам не одной религии и даже в наш век позволяет кодифицировать законы в области физических наук. Для примера из повседневной жизни: скажем, встретились пять человек, а потом расстались. Что бы они ни делали, как бы их ни разбросало по земле, сколь ни различны оказались бы их судьбы, число пять (результат подсчета) остается без изменений. Оно не зависит ни от космических катаклизмов, ни от времени. Более того, все то же число пять будет обозначать любые единицы учета в любом множестве из пяти предметов, какими бы они ни были.

Обыденные для нас универсальность и неизменность чисел оставались на протяжении многих веков за пределами воображения управляющих, пересчитывающих трофеи. Числа были полезны им, и это, пожалуй, все, что им требовалось знать для собственного выживания и процветания. Корни счета уходили далеко назад в прежние времена, а их собственная цивилизация так продвинулась вперед, что, по-видимому, им никогда не приходило в голову поинтересоваться, что есть число, или поразмышлять, как человечеству выпал случай изобрести числа. Все эти метания человеческой души продлятся многие тысячи лет. Даже любознательные греки не уточняли, что есть числа, хотя Пифагор и его последователи время от времени говорили о них как о живых существах.
1 2 3 4 5 6 >>
На страницу:
1 из 6