72. Данилин А. В., и Зиндер Е. З., (2006) Разработка концепции единой архитектуры «электронного правительства». Презентация. слайд 20 http://www.myshared.ru/slide/189128/
73. Данилин А. В., Слюсаренко А. И. Курс лекций: ИТ-стратегия. Лекция 8: Архитектуры для государственных ведомств. Примеры. М.: Интернет-Университет Информационных Технологий. https://www.book.ru/book/917728/view2/10
74. Дёмина А. В. (2015) Электронный бизнес. Саратов: Саратовский социально-экономический институт (филиал) ФГБОУ ВПО «РЭУ им. Г. В. Плеханова». C.176 ISBN 978–5–4345–0331–0 http://www.seun.ru/content/learning/4/science/1/doc/Demina_Elektronnij_biznes.pdf
75. Дрожжинов В. И. (2010) «Оценка европейских моделей предоставления государственных и муниципальных услуг в электронном виде на местном уровне», Москва: EuropeAid/126204/SER/RU Проект G2C по поддержке э-правительства Российской Федерации. Компонент 2: Политические, законодательные и нормативно-правовые рамки. Активность 2.2: Подготовить аналитические заметки по ключевым стратегическим вопросам о развитии э-правительства в России. C. 72 http://doc.knigi-x.ru/22yuridicheskie/417536–1-europeaid-126204-ser-ru-vladimir-drozhzhinov-vladimir-drozhzhinov-issledovanie-ocenka-evropeyskih-modeley-predo.php
76. Косяков А, Свит У. и др. (2014) Системная инженерия. Принципы и практика. Пер. с англ. Под ред. В. К. Батоврина. М.: ДМК Пресс C.636: илл. https://search.rsl.ru/ru/record/01008645598
77. Ларина Е. (2013) IBM Watson: путь к когнитивно-вычислительному бизнесу. Портал Trebunet http://www.therunet.com/articles/2211-ibm-watson-put-k-kognitivno-vychislitelnomu-biznesu
78. Левенчук А. (2015) Системноинженерное мышление. М.: TechInvestLab. 305 С. 2 апреля http://techinvestlab.ru/files/systems_engineering_thinking/systems_engine
79. Липунцов Ю. П. (2010) Электронное государство. Часть 1. Модели и архитектура: Раздел 2.5. Архитектура электронного государства России в книге: Учебное пособие. М.: Экономический факультет МГУ им. М. В. Ломоносова. ТЕИС. C. 272. https://istina.msu.ru/publications/book/1322644/
80. Малиновский Б. Н. (1995) История вычислительной техники в лицах. К.: фирма «КИТ». ПТОО «А.С.К.». C. 384. ил. ISBN 5–7707–6131–8 http://lib.ru/MEMUARY/MALINOWSKIJ/0.txt_with-big-pictures.html
81. Михайлова О. В. (2014) Сетевая архитектура государственного управления: проблемы концептуализации и практики. Диссертация на соискание ученой степени доктора политических наук МГУ им. Л. В. Ломоносова http://www.dslib.net/polit-instituty/setevaja-arhitektura-gosudarstvennogo-upravlenija-problemy-konceptualizacii-i.html
82. Михеев Ю. А. (2011) Система государственного управления в информационном обществе и информационно-коммуникационные технологии. М. Типография ГМЦ Росстата. C.256 http://docplayer.ru/43032493-Yu-a-miheev-sistema-gosudarstvennogo-upravleniya-v-informacionnom-obshchestve-i-informacionno-kommunikacionnye.html
83. Николаев В. Г. (2015) «Геоинформационная платформа «Единое информационное пространство геоданных» для создания комплексных региональных систем» М. Журнал: ГЕОМАТИКА № 1. С.80–87. ISSN: 2410–6879 https://elibrary.ru/item.asp?id=23335150
84. Правила и процедуры Системы межведомственного электронного взаимодействия при взаимодействии по Методическим рекомендациям 3.0 http://d-russia.ru/wp-content/uploads/2014/12/project_SMEV_3.pdf
85. Проект «Хроника взаимооотношений Минкомсвязи и Ростелекома по проекту электронное правительство» 2009–2016 Tadviser. http://tadviser.ru/a/218533
86. Резолюция Генеральной Ассамблеи ООН от 25 сентября 2015 года/ Преобразование нашего мира: Повестка дня в области устойчивого развития на период до 2030 года http://unctad.org/meetings/en/SessionalDocuments/ares70d1_ru.pdf
87. Рейтинг электронного правительства ООН (2016) Tadviser http://tadviser.ru/a/319289
88. Справочные модели, опубликованные как отдельные документы в переводе на русский язык, можно найти на странице Центра компетенции по электронному правительству при Американской торговой палате в России (2002–2004 гг.) на сайте Центра технологий электронного правительства НИУИТМО http://library.egov.ifmo.ru/ru/biblio?f[author]=66
89. Ханнес Асток (2008) Мобильное правительство: мобильные сервисы в государственном секторе http://zelao.ru/files/videoseminar1/Opyt_Estonii_v_sfere_mobilnogo_pravitelstva.pdf
90. Целищева Е. Ф. От электронного правительства к электронному государству. Электронный журнал научных публикаций студентов и молодых учёных http://ego.uapa.ru/en/issue/2011/02/1/
91. Центр компетенции по электронному правительству (1999) Руководство по разработке архитектуры федерального предприятия. Версия 1.1. Разработано Советом руководителей информационных служб CIO. Расширенный реферат по материалам: Federal Enterprise Architecture Framework. Ver. 1.1. Developed by: The Chief Information Officers Council http://library.egov-center.ru/sites/default/files/Federal_EA_CIO.pdf
92. Центр компетенции по электронному правительству (2001) Практическое руководство по разработке архитектуры федерального предприятия Совет Руководителей служб информационных систем. Версия 1.0. Февраль 2001. Расширенный реферат по материалам: A Practical Guide to Federal Enterprise Architecture Chief Information Officer Council. Ver. 1.0 http://egov.ifmo.ru/files/000052.pdf
93. Что такое интернет вещей (2017) Tadviser http://tadviser.ru/a/135141
Часть 2 Электронное правительство как объект системной инженерии
Введение
К созданию электронных правительств страны приступают после информатизации органов власти, когда созданы системы, которые автоматизируют деятельность органов власти и местного самоуправления. Эти системы являются социотехническими, т. е. объединяют техническую составляющую и лиц, принимающих решения либо обеспечивающих их подготовку, чтобы обеспечить эффективное исполнение государственных функций. В процессе создания и развития э-правительства стоит задача не только интегрировать эти системы на базе инфраструктуры ЭП для автоматизации предоставления услуг населению и бизнесу, но также провести трансформацию систем и процессов деятельности, не прерывая при этом исполнение функций и принятие решений.
Таким образом, электронное правительство включает как собственные развиваемые инфраструктурные и социотехнические системы, так и социотехнические развиваемые системы органов власти. Находясь на различных административных уровнях власти – национальном, федеральном, региональном и местном, – эти многочисленные государственные организации, учреждения и предприятия в значительной мере самостоятельны в своей деятельности и управлении своими системами. Поэтому и системы, входящие в состав э-правительства, в общем случае остаются автономными – не зависят одна от другой с административной и технической точек зрения. Они могут обмениваться информацией через каналы связи, но среда их взаимодействия отличается высокой гетерогенностью.
Автономных систем (системы систем), отличаются от свойств системы из подсистем. А ее жизненный цикл – от жизненного цикла системы, изначально спроектированной как одно целое и имеющей единого владельца. Это приводит к значительным особенностям применения системной инженерии при построении э-правительства, которым мы и посвятили вторую часть монографии.
Интерпретация э-правительства как системы систем была предложена нами в 2014 году [52], и в специальной литературе еще недостаточно исследована. На наш взгляд, такая интерпретация позволяет более точно сформулировать жизненный цикл э-правительства, наиболее адекватно учесть его свойства и особенности функционирования. Для частичного заполнения этого пробела в главе 4 мы рассматриваем основные понятия и особенности методов системной инженерии, применяемые при создании и функционировании системы систем, значение интероперабельности для интеграции гетерогенных систем и особенности интеграции систем при различных руководящих принципах реализации э-правительства (см. часть 1).
Возможности и свойства сложных информационных систем в значительной мере зависят от начального этапа их разработки, когда системная инженерия вносит наиболее важный вклад в успех всего проекта. Анализ автоматизируемой деятельности, определение заинтересованных сторон и их потребностей, выработка системных требований предваряют формирование концепции функционирования, которая, как правило, становится первым базовым документом при создании системы. Положения концепции итеративно уточняются в процессе описания архитектуры, для которого системная инженерия предоставляет необходимые методы и инструменты. Применительно к электронному правительству эта часть процесса разработки направлена на структурирование представлений участников об ЭП, создание его концептуальной модели, определение состава и методик построения/развития набора моделей э-правительства. Описание архитектуры электронного правительства дает возможность с большей степенью детализации определить и консолидировать различные позиции (интересы) его участников и потребителей, а также планировать жизненный цикл и управлять изменениями для согласованного развития ЭП и входящих в него систем.
Основные понятия архитектуры систем и методы описания архитектуры как набора моделей представлений с точки зрения различных заинтересованных сторон представлены в главе 5. Применение эталонных моделей, абстрактных и независимых от технологии, в качестве основы процесса построения архитектуры и переход от эталонных моделей к разработанным в результате этого процесса конкретным моделям рассматриваются в главе 6. Методики построения архитектуры и рекомендации по использованию этих методов обсуждаются в главе 7.
Применение методов системной инженерии с учетом особенностей системы систем, обоснованный выбор и использование методов построения архитектуры имеют решающее значение для успешного создания и функционирования э-правительства.
Глава 4 Системная инженерия электронного правительства
4.1. Системы систем: особенности применения системной инженерии
Середина ХХ века ознаменовалась быстрым ростом сложности инженерных объектов, что привело к возникновению системной инженерии как прикладной методологии успешного построения систем. Первый крупный вклад в развитие системной инженерии внес [23] Д. У. Гилмен, который, вероятно, сделал первую попытку учить системных инженеров в Массачусетском технологическом институте в 1950 году. Развитие системной инженерии было связано с работами ряда зарубежных и отечественных исследователей, обзор основных публикаций которых приведен в [19] и [54].
В 1990 году была создана первая профессиональная организация для исследований в области системной инженерии – Национальный совет по системной инженерии (NCOSE). Летом 1995 года организация официально изменила свое название на Международный совет по системной инженерии (INCOSE), чтобы отразить растущее участие специалистов из десяти различных стран мира. К настоящему времени INCOSE объединяет 16 000 специалистов из 35 стран[138 - https://www.incose.org/incose-impact].
Нужно заметить, что в СССР системная инженерия (она называлась системотехникой) с 60-х годов активно развивалась, но в период перестройки соответствующие дисциплины постепенно перестали преподаваться в учреждениях высшей школы. Последние учебники на русском языке по этой дисциплине относятся к 80-м гг. прошлого столетия, и лишь в 2013 г. в МФТИ открылась выпускающая межфакультетская кафедра системного инжиниринга[139 - http://sehs.mipt.ru/school/about]. «В середине 2000-х годов в течение короткого периода наши специалисты пытались интегрироваться в мировое сообщество создателей нормативно-технического обеспечения системной инженерии, они, в частности, приняли участие в разработке стандарта ISO/IEC 15288. В 2007 году в Москве прошло заседание ISO/IECJTC1/SC7, в котором от России приняло участие около 10 человек» [53]. А в 2009 году было организовано российское отделение INCOSE, которое к концу 2012 года насчитывало 135 членов[140 - https://incose-rus.weebly.com].
Основные вехи в развитии системной инженерии с 1950 до 2012 года проиллюстрированы на рис. 2.1 [53].
Рис. 2.1. Системная инженерия. Важные вехи [53]
В 2012 году была опубликована первая версия фундаментального «Руководства по своду знаний в области системной инженерии» (Guide to the Systems Engineering Body of Knowledge, далее – SEBoK) [21], после чего дальнейшее управление развитием этого свода знаний было передано INCOSE[141 - http://www.incose.org/]. А с 2013 года к этой работе подключились другие крупнейшие организации системных инженеров – Исследовательский центр системного инжиниринга (Systems Engineering Research Center, SERC)[142 - http://www.sercuarc.org/] Международного Совета по системной инженерии (INCOSE) и Институт инженеров по электротехнике и электронике – Компьютерное общество (Institute of Electrical and Electronics Engineers Computer Society, ІЕЕЕ-CS)[143 - http://www.ieee.org/index.html]. SEBoK постоянно расширяется: в 2017 году вышла версия 1.8 [22], в разработке которой приняло участие более сотни специалистов из 17 стран.
В соответствии с SEBoK под системной инженерией понимают «междисциплинарный подход и способы обеспечения воплощения успешных систем» [22, Glossary]. Взаимодействие ключевых элементов системной инженерии проиллюстрировано на рис. 2.2.
Для определения места системной инженерии в создании и внедрении систем удобно использовать диаграмму Венна[144 - Диаграмма Венна – это схема, которая показывает все возможные логические отношения между конечной коллекцией различных наборов. Диаграмма Венна состоит из нескольких пересекающихся замкнутых кривых, обычно кругов, каждый из которых представляет собой набор, см. J. Venn M. A., «On the diagrammatic and mechanical representation of propositions and reasonings», https://www.cis.upenn.edu/~bhusnur4/cit592_fall2014/venn%20diagrams.pdf]. На рис. 2.3 показаны область действия и пересечения системной инженерии, внедрения систем и управления проектом/системой.
Рис. 2.2. Ключевые элементы системной инженерии
Источник: SEBoK v1.8 [22, Introduction to Systems Engineering]
Рис. 2.3. Границы системной инженерии,
внедрения систем и управления проектом/системой [22]
Авторы SEBoK подчеркивают, что системная инженерия «ориентирована на целостное и одновременное понимание потребностей заинтересованных сторон; обследование возможностей; документирование требований; обобщение, верификацию, валидацию и совершенствование решений при рассмотрении комплексной проблемы, начиная с анализа концепции и заканчивая утилизацией системы»[145 - http://sebokwiki.org/wiki/Systems_Engineering_(glossary)] [22, Glossary].
К основным понятиям (концепциям) системной инженерии в соответствии с ГОСТ Р 57193–2016 [15н][146 - Разработан с учетом основных нормативных положений международного стандарта ISO/IEC/IEEE 15288:2015 [32] т.] относятся:
1. Система (system) – комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей.
2. Жизненный цикл (life cycle) – развитие системы, продукции, услуги, проекта или другой создаваемой человеком сущности от замысла до списания.
3. Заинтересованная сторона (stakeholder) – индивидуум или организация, имеющие право, долю, требование или интерес в системе или в обладании ее характеристиками, удовлетворяющими их потребности и ожидания.