При этом особое внимание заслуживает связка ИИ + IoT (Интернет вещей):
– ИИ получает чистые большие данные, в которых нет ошибок человеческого фактора для обучения и поиска взаимосвязей.
– Эффективность IoT повышается, так как становится возможным создание предиктивной (предсказательной) аналитики и раннего выявления отклонений.
Ключевые тренды
– Машинное обучение движется ко всё более низкому порогу вхождения.
Одна из задач, которую сейчас решают разработчики, – упрощение создания ИИ-моделей до уровня конструкторов сайтов, где для базового применения не нужны специальные знания и навыки. Создание нейросетей и дата-сайнс уже сейчас развиваются по модели «сервис как услуга», например, DSaaS – Data Science as a Service.
Знакомство с машинным обучением можно начинать с AUTO ML, его бесплатной версией, или DSaaS с проведением первичного аудита, консалтинга и разметкой данных. При этом даже разметку данных можно получить бесплатно. Всё это снижает порог вхождения.
– Создание нейросетей, которым нужно все меньше данных для обучения.
Несколько лет назад, чтобы подделать ваш голос, требовалось предоставить нейросети один-два часа записи вашей речи. Года два назад этот показатель снизился до нескольких минут. Ну, а в 2023 году компания Microsoft представила нейросеть, которой достаточно уже трех секунд для подделки.
Плюс появляются инструменты, с помощью которых можно менять голос даже в онлайн режиме.
– Создание систем поддержки и принятия решений, в том числе отраслевых.
Будут создаваться отраслевые нейросети, и всё активнее будет развиваться направление рекомендательных сетей, так называемые «цифровые советники» или решения класса «системы поддержки и принятия решений (DSS) для различных бизнес-задач».
Практический пример
Этот кейс мы рассмотрим еще не раз, так как это моя личная боль и тот продукт, над которым я работаю.
В проектном управлении существует проблема – 70% проектов либо проблемные, либо провальные.
– среднее превышение запланированных сроков наблюдается в 60% проектов, а среднее превышение на 80% от изначального срока;
– превышение бюджетов наблюдается в 57% проектов, а среднее превышение составляет 60% от изначального бюджета;
– недостижение критериев успешности – в 40% проектов.
При этом управление проектами уже занимает до 50% времени руководителей, а к 2030 году этот показатель достигнет 60%. Хотя еще в начале 20 века этот показатель был 5%. Мир становится все более изменчивым, и количество проектов растет. Даже продажи становятся все более «проектными», то есть комплексными и индивидуальными.
А к чему приводит такая статистика проектного управления?
– Репутационные потери.
– Штрафные санкции.
– Снижение маржинальности.
– Ограничение роста бизнеса.
При этом наиболее типовые и критичные ошибки:
– нечеткое формулирование целей, результатов и границ проекта;
– недостаточно проработанные стратегия и план реализации проекта;
– неадекватная организационная структура управления проектом;
– дисбаланс интересов участников проекта;
– неэффективные коммуникации внутри проекта и с внешними организациями.
Как решают эту задачу люди? Либо ничего не делают и страдают, либо идут учиться и используют трекеры задач.
При этом у обоих подходов есть свои плюсы и минусы. Например, классическое обучение дает возможность в ходе живого общения с учителем задавать вопросы и отрабатывать на практике различные ситуации. При этом оно дорого стоит и обычно не подразумевает дальнейшего сопровождения после окончания курса. Трекеры задач же, напротив, всегда под рукой, но при этом не адаптируются под конкретный проект и культуру компании, не способствуют выработке компетенций, а напротив, призваны для контроля работы.
В итоге, проанализировав свой опыт, я пришел к идее цифрового советника – искусственного интеллекта и предиктивных рекомендаций «что сделать, когда и как» за 10 минут для любого проекта и организации. Проектное управление становится доступным для любого руководителя условно за пару тысяч рублей в месяц.
В модель ИИ заложена методология управления проектами и наборы готовых рекомендаций. ИИ будет готовить наборы рекомендаций и постепенно самообучаться, находить все новые закономерности, а не привязываться к мнению создателя и того, кто будет обучать модель на первых этапах.
Глава 4. Генеративный ИИ
Что такое генеративный искусственный интеллект?
Ранее мы рассмотрели ключевые направления для применения ИИ:
– прогнозирование и принятие решений;
– анализ сложных данных без чётких взаимосвязей, в том числе для прогнозирования;
– оптимизация процессов;
– распознавание образов, в том числе изображений и голосовых записей;
– генерация контента.
Направления ИИ, которые сейчас на пике популярности, – распознавание образов (аудио, видео, числа) и на их основе генерация контента: аудио, текст, код, видео, изображения и так далее. В том числе к генеративному ИИ можно отнести и цифровых советников.
Проблемы генеративного ИИ
По состоянию на середину 2024 года направление генеративного ИИ нельзя назвать успешным. Так, например, в 2022 году компания OpenAI понесла убытки в размере $540 млн из-за разработки ChatGPT. А для дальнейшего развития и создания сильного ИИ потребуется еще около 100 млрд долларов. Такую сумму озвучил сам глава OpenAI. Такой же неблагоприятный прогноз на 2024 год дает и американская компания CCS Insight.
Для справки: операционные затраты Open AI составляют $700 000 в день на поддержание работоспособности чат-бота ChatGPT.
Общий тренд поддерживает и Алексей Водясов, технический директор компании SEQ (https://www.cnews.ru/book/Atos_Prescriptive_Security_-_SEQ_-_SEC_Consult_Services_-_Vulnerability_Lab_-_%D0%9C%D0%BE%D0%BD%D0%B8%D1%82%D0%BE%D1%80_%D0%B1%D0%B5%D0%B7%D0%BE%D0%BF%D0%B0%D1%81%D0%BD%D0%BE%D1%81%D1%82%D0%B8): «ИИ не достигает тех маркетинговых результатов, о каких говорили ранее. Их использование ограничено моделью обучения, при этом затраты и объем данных для обучения растет. В целом же за хайпом и бумом неизбежно следует спад интереса. ИИ выйдет из фокуса всеобщего внимания так же быстро, как и вошёл, и это как раз нормальное течение процесса. Возможно, спад переживут не все, но ИИ – это действительно „игрушка для богатых“, и таковой на ближайшее время и останется». И мы согласны с Алексеем, после шумихи в начале 2023 года уже к осени наступило затишье.
Дополняет картину расследование (https://www.wsj.com/tech/ai/ais-costly-buildup-could-make-early-products-a-hard-sell-bdd29b9f?mod=followamazon) Wall Street Journal, согласно которому, большинство ИТ-гигантов пока не научилось зарабатывать на возможностях генеративного ИИ. Microsoft, Google, Adobe и другие компании, которые вкладываются в искусственный интеллект, ищут способы заработать на своих продуктах. Несколько примеров:
– Google планирует повысить стоимость подписки на программное обеспечение с поддержкой ИИ;
– Adobe устанавливает ограничения на количество обращений к сервисам с ИИ в течение месяца;