и
, но
может быть где угодно.
Вопросы для самопроверки:
– Для 5 таксонов нарисуйте несколько некорневых деревьев, которые топологически отличаются от изображенных на рисунке 5.19, но также имеют оценку экономии 2.
– Объясните, почему ни одно дерево, относящееся к этим 5 таксонам, не может иметь оценку экономии 1. Подсказка: если бы для дерева требовалась только одна мутация, то как выглядели бы основания на листьях?
Существует несколько деревьев (на самом деле, пять деревьев имеют оценку экономии 2), которые можно считать наиболее экономными. Когда это происходит, использование метода экономии требует отчета обо всех найденных деревьях, которые достигают минимального балла, потому что все они одинаково хороши согласно сформулированным критериям их выбора.
При работе с реальными данными последовательности, конечно, нужно подсчитать количество мутаций, необходимых для дерева, среди всех сайтов в последовательностях. Это можно сделать так же, как и раньше, просто обрабатывая каждый сайт параллельно. Пример приведём на рисунке 5.20.
Рисунок 5.20. Вычисление оценки экономии для дерева на трех участках.
Переходя вверх по дереву, начиная с 2 последовательностей таксонов, ATC и ACC в крайнем левом углу, видим, что там не нужны мутации ни в первом, ни в третьем узлах, но понадобятся мутации во втором. Таким образом, количество мутаций теперь равно 1, а вершина предка помечена, как показано на рисунке. На вершине, где соединяется ребро из третьего таксона, обнаруживаем, что первый участок нуждается в мутации, второй нет, а третий снова нуждается. Это увеличивает количество мутаций на 2, чтобы суммарно дать 3. Наконец, в корне обнаруживаем, что нужна мутация только во втором месте, для окончательной оценки экономии 4.
Хотя это нетрудно сделать вручную с небольшим количеством сайтов, когда считается много сайтов, это становится очень трудоёмкой задачей. Хуже то, что если есть взять еще немного таксонов, то количество топологий деревьев, которые необходимо учитывать, огромно. Таким образом, метод экономии на практике выполняется только с помощью компьютера. На самом деле, при большом количестве таксонов количество возможных деревьев настолько велико, что часто компьютерные программы проверяют не все, а только определенные конфигурации, чтобы выбрать наиболее экономное сочетание. Хорошее программное обеспечение, управляемое профессиональными пользователями, часто поможет найти то, что, вероятно, будет самыми экономными деревьями, но в этом нет никакой гарантии. Это вызывает некоторое смущение у исследователей, публикующих деревья, найденные машинным перебором. Так как, не имея малейшего представления, насколько хороши найденные варианты, им приходится использовать то, что есть, пока фактически случайным образом не будет найдено ещё более оптимальной конфигурации.
Можно исключить некоторые варианты из перебора при использовании метода экономии, если заметим, что не все сайты будут влиять на количество мутаций, необходимых для дерева. Очевидным случаем является то, что если все последовательности имеют одно и то же основание в определенном сайте, то всем деревьям потребуется 0 мутаций для этого сайта. Таким образом, можем исключить этот сайт из последовательностей перед применением алгоритма. Менее очевиден случай, когда в сайте все последовательности имеют одно и то же основание (например, А), за исключением не более чем одной последовательности, каждая из которых имеет другие основания (С, Т и G). В этом случае, независимо от топологии дерева, если поставим A в каждой внутренней вершине, то получим минимально возможное количество мутаций. Это означает, что такой сайт не повлияет на то, какое дерево выберем как самое экономное. Данная возможность приводит к возникновению следующего понятия.
Определение. Информативный сайт – это сайт, на котором по крайней мере два разных основания встречаются как минимум по два раза каждое среди рассматриваемых последовательностей.
Прежде чем применять алгоритм экономии, можем исключить все неинформативные сайты из последовательностей, потому что они не повлияют на выбор самого экономного дерева. Обратите внимание, что в предыдущих примерах использовались только информативные сайты.
Метод максимальной экономии не использует ни модель молекулярной эволюции Джукса-Кантора, ни какую-либо другую явную модель мутации ДНК. Вместо этого метод подразумевает неявное предположение о том, что мутации случаются редко, а лучшее объяснение истории эволюции – это то, которое требует наименьшего количества мутаций. Между исследователями, выступающими за основанные на перечисленных моделях методы реконструкции эволюционных деревьев, и теми, кто выступает за метод экономии, велись ожесточенные, а иногда и жесткие споры. Вместо того, чтобы присоединяться к философскому спору, просто отметим, что, когда есть несколько мутаций, скрывающих предыдущие мутации, то и методы дистанцирования, и методы экономии, по-видимому, на практике работают достаточно хорошо. Предположения каждого из методов могут быть подвергнуты обоснованной критике, и многое еще предстоит сделать, чтобы найти лучшие решения.
Задачи для самостоятельного решения:
5.4.1. а. Вычислите минимальное количество базовых изменений, необходимых для деревьев на рисунке 5.21.
Рисунок 5.21. Деревья для задачи 5.4.1.
б. Дайте по крайней мере три дерева, которые связывают наиболее экономные последовательности с одним основанием, используемые в части (a). Помните: можно перечислять таксоны в другом порядке.
в. Среди деревьев, прослеживающих эволюцию только на одном участке, как в частях (а) и (б), почему всегда можно найти дерево, требующее не более трех замен, независимо от того, сколько таксонов присутствует?
5.4.2. а. Найдите оценку экономии деревьев, изображенных на рисунке 5.22, где показаны только информативные сайты в последовательностях ДНК.
б. Нарисуйте третье возможное (некорневое) топологическое дерево, относящееся к этим последовательностям, и найдите для него оценку экономии. Какое из трех деревьев является наиболее скупым?
Рисунок 5.22. Деревья для задачи 5.4.2.
5.4.3. Рассмотрим следующие последовательности из четырех таксонов.
: AATCG CTGCT CGACC
: AAATG CTACT GGACC
: AAACG TTACT GGAGC
: AATCG TGGCT CGATC
а. Какие сайты являются информативными?
б. Используйте информативные сайты, чтобы определить наиболее скупое некорневое дерево, относящееся к этим последовательностям.
в. Если известно, что
является внешней группой, используйте свой ответ на часть (б), чтобы создать корневое дерево, относящееся к
,
и
.
5.4.4. Хотя неинформативные сайты не влияют на то, какое дерево считается наиболее экономным, они влияют на показатель экономии. Объясните, почему, если
и
являются скупыми оценками для дерева, использующего все сайты и использующего только информативные сайты соответственно, то
, где, для
, за
обозначаем количество сайтов со всеми таксонами в согласии, за исключением
таксонов, которые все различны. Примечание: Принимая во внимание, что
и
могут быть различаться для разной топологии, значение
не зависит от топологии.
5.4.5. Для первого дерева на рисунке 5.23 рассчитайте минимальное количество требуемых изменений базы, разметив внутренние вершины по алгоритму из предыдущего раздела. Затем покажите, что второе дерево требует точно такого же количества изменений основания, даже если это не согласуется с тем, как обозначили внутренние вершины на первом дереве. Основной вывод, к которому нужно прийти после решения этой задачи заключается в том, что алгоритм, который используется для подсчета минимального количества изменений базы, необходимых для дерева, не обязательно покажет все способы, которыми можно достигнуть минимума.
Рисунок 5.23. Деревья для задачи 5.4.5.
5.4.6. Если приведены последовательности для 3 терминальных таксонов, то информативных сайтов быть не может. Объясните, почему это так, и почему это не имеет значения.
5.4.7. Основания на определенном участке в выровненных последовательностях из разных таксонов образуют закономерность. Например, при сравнении
последовательностей на участке шаблонная запись (ATTGA) означает, что A появляется на этом участке в последовательности первого таксона, T во второй, T в третьей, G в четвертой и A в пятой.