Чтобы осознать это, проще всего сравнить изучение математики с освоением других основных навыков.
Разве нам казалось бы нормальным, что некоторые подростки считают крутым не уметь читать? Что они полагают, будто те, кто читает бегло, кому не приходится разбирать каждую букву, например, не может ни с кем подружиться?
Разве нам казалось бы нормальным, что половина определенной возрастной группы оканчивает школу, не умея правильно есть ложкой? Или не умея завязывать шнурки?
Решать математические задачи старших классов школы должно быть так же просто, как завязывать шнурки, и если это не так, значит, с преподаванием математики есть большая проблема.
Две гипотезы
Чтобы объяснить, почему существуют, с одной стороны, «способные к математике», а с другой – «неспособные к математике», обычно приводят две гипотезы.
Первая гипотеза: это вопрос мотивации. Если человек полный ноль в математике, то это потому, что он ее не любит, а не любит он ее потому, что не понимает, зачем она ему нужна в повседневной жизни. Но разве люди правда верят, что в повседневной жизни им пригодится история? И все же это не делает ее непостижимой, и уроки истории никого не повергают в панику. Никто никогда не видел, чтобы школьник плакал, потому что не может понять, что такое война или революция.
На самом деле такие «нули» отлично поняли, что разбираться в математике зачем-то да нужно, хотя бы для того, чтобы хорошо учиться в школе и поступить в хороший университет. Они же не идиоты. Они прекрасно поняли, что неспособность к математике закрывает им доступ ко многим профессиям из числа самых высокооплачиваемых и самых престижных. Возможно, они не понимают всю важность математики, но они знают, что она так или иначе важна. И чувствуют себя исключенными из нее, что дает им прекрасный повод ее ненавидеть.
Вторая гипотеза более жестока. Она предполагает, что существует некий загадочный тип интеллекта – математический интеллект, крайне неравномерно распределенный среди населения. Это якобы объясняется биологией. Есть математическая железа или математический ген. Способные к математике просто такими родились, а неспособным просто не повезло.
Тот факт, что эта идея так популярна, сам по себе удивителен. Казалось бы, нам следовало научиться с подозрением относиться к таким идеям. Было время, когда люди считали, что определенным расам предназначено природой работать на хлопковых плантациях, а другим – владеть этими хлопковыми плантациями. Еще недавно можно было услышать, что женщины генетически не способны пилотировать истребители. Сейчас эти идеи уже дискредитированы.
Если вы все еще сомневаетесь, то в следующей главе узнаете, что у вас есть все необходимые умственные способности, позволяющие достичь очень высокого уровня в математике.
Биологическое неравенство существует, но оно не похоже на то, что я только что описал. Проще всего понять его, предложив выпускному классу пробежать стометровку. Кто-то справится за 11 секунд, кто-то за 13 или 18. Возможно, кому-то понадобится целых 30 секунд, чтобы пробежать эту дистанцию.
Этот разрыв можно объяснить многими факторами, такими как мотивация, тренированность, здоровый образ жизни, – и, конечно, генетикой. Мы генетически неравны в предрасположенности к бегу. Но на стометровой дистанции эти генетические факторы помогают выиграть лишь несколько секунд.
А теперь представьте, что кто-то добежал за 11 секунд, но половина класса не пришла к финишу и через неделю. Примерно так выглядит разброс уровня в математике к выпускному классу школы.
Вы идете искать отставших. Некоторые так и сидят на старте. Они объясняют вам, что стометровка – это худшая вещь на свете. Они не понимают, зачем она может им пригодиться в повседневной жизни, и считают, что физрук – просто злобный садист.
И из этого можно сделать вывод, что все дело в генетике? Серьезно?
Мне хотелось бы убедить вас, что единственное возможное объяснение – гигантское недопонимание. «Неспособные к математике» неспособны к ней, потому что никто не потрудился дать им четкие указания. Никто не сказал им, что математика – это физическая активность. Никто не сказал, что в математике нужно не заучивать, а делать.
Они берут ложку не с того конца, потому что никто не объяснил им, как надо, и они никогда не видели, как ее берут с подходящего конца.
Фразы, которые произносятся на уроке математики, – это не информация, которую надо запомнить. Это советы и указания для невидимых действий, которые каждый должен скрытым образом произвести в своей голове.
Слушать урок математики так, как мы слушаем урок истории или биологии, – так же нелепо, как конспектировать занятия йогой – тщательно, чтобы точно ничего не забыть. Если вы не делаете даже простейших дыхательных упражнений, это ровным счетом ничего не даст.
Глава 3
Силой мысли
Представьте себе круг – идеально правильный, без единого недостатка. Круг – проще некуда. Вы его видите?
В реальной жизни идеальных кругов не существует. Когда мы рисуем круг на бумаге, у него всегда есть небольшие неровности. Не бывает идеально круглых вещей: ни колеса велосипеда, ни солнечный диск, ни круги на воде не идеальны.
Но это совершенно не мешает вам понять, о чем я говорю, и вообразить идеальный круг.
Вы можете не только его представить, но и буквально увидеть его. Вы можете его мысленно перемещать. Увеличить или уменьшить. Да вообще делать с ним все, что пожелаете.
Эта способность видеть предметы, которых не существует в реальности, ощущать их прямо здесь, перед вами, и манипулировать ими в мыслях так же свободно, как если бы вы могли к ним прикоснуться, – и есть одна из ваших волшебных способностей.
Путь, который позволит вам по-настоящему понять математику, начинается отсюда.
Наша удивительная способность к абстракции
Идеальный круг – это математическая абстракция. Круги выглядят для вас знакомыми предметами потому, что вы, как и все люди, обладаете природной способностью к математической абстракции.
Ваша способность к абстракции не ограничена математикой.
Хотите вы того или нет, вы все время смотрите на мир абстрактным взглядом. Это физиологическое свойство вашего тела. Ваш мозг – машина для извлечения абстракций и мысленных манипуляций с ними, так же как ваши легкие – машина для извлечения кислорода из воздуха и передачи его в кровь.
Как такое возможно? Об этом пойдет речь в главе 19, где мы увидим, как структура нашего мозга от природы позволяет создавать абстракции и манипулировать ими.
А до тех пор, даже если вы не вполне понимаете, как возможно такое чудо, приходится признать очевидное: вы способны увидеть круг.
Наша удивительная способность к рассуждению
Может ли прямая линия пересекать окружность в трех точках? Не торопитесь. Тут нет подвоха. Просто попробуйте составить собственное мнение. Попробуйте представить все способы, которыми прямая может пересекать окружность, и увидеть, возможны ли в некоторых случаях три точки пересечения.
Нет, прямая не может пересекать окружность в трех точках.
Ответ кажется вам очевидным? Это потому, что вам, как и всем людям, присуща удивительная способность к математическому рассуждению.
Вы не просто способны вообразить абстрактные объекты, такие как прямые и окружности, – вы способны задаваться абстрактными вопросами об этих объектах и манипулировать ими у себя в голове, чтобы найти ответ.
Ответ для вас очевиден, но что вы будете делать, если кто-то скажет вам, что не понимает?
Вам захочется начать объяснения со слов «ну ты же видишь…», но это не сработает. Если кто-то не понимает, значит, этот кто-то не видит окружности и прямые так же ясно, как вы. Объяснять математику – значит помогать другим увидеть то, что они еще не умеют видеть.
Ваше рассуждение происходит интуитивно и визуально. У вас в голове оно похоже на мультик, где персонажи – окружность и прямая. Такой тип рассуждения очень эффективен, но его трудно передать словами. Слова никогда не могут в полной мере объяснить тонкости того, что вы видите.
Получая математическое образование, вы научитесь преобразовывать свою визуальную интуицию в строгие доказательства. Преобразование никогда не будет идеально точным. Чтобы выразить понятные выводы интуиции, нужно много слов. У вас в голове все так просто. Но стоит это написать – и все становится жутко техничным и сложным.
Наша удивительная интуиция
Вы – единственный, кто способен видеть, что происходит у вас в голове. Пусть это трудно, но только постаравшись строго перевести все это в слова и символы, вы сможете поделиться этим с другими. А еще эти усилия по переводу – единственный способ проверить, что ваша интуиция не ошиблась.
Потому что иногда она ошибается.
Вы это знаете и не любите, когда вам об этом напоминают. Самый верный способ задеть кого-то – посмеяться над его внешностью. Но заставить его усомниться в своей интуиции – вот способ поистине действенный. Обычно срабатывает один из двух защитных механизмов: или человек решает, что он полное ничтожество, зарабатывает комплекс неполноценности и перестает рефлексировать, или же говорит себе, что он все равно прав, а остальные – просто болваны (и тоже перестает рефлексировать).
Однако есть и третий путь. Когда Эйнштейну или Декарту говорят, что их интуиция ошибочна, они не чувствуют себя задетыми. Не считают себя ничтожествами. И тем более не считают других болванами. Они реагируют иначе. Как именно? Это одна из центральных тем данной книги.
Когда в школе вас научили не доверять интуиции, учителя совершили две ошибки. Две величайших ошибки, затормозивших ваше интеллектуальное развитие.
Первая ошибка – все преувеличивать. Вам создали комплексы на пустом месте. Да, ваша интуиция иногда ошибается – но не всегда. Зачастую она права. И вы можете сделать так, чтобы она как можно реже ошибалась. Вы можете научить ее видеть яснее и точнее. Начиная на том же уровне, что и вы, математики создают себе сильную и надежную интуицию. Они делают это с помощью простых методов, таких как те, что описаны в этой книге.