И в самом деле, закон инерции играет здесь роль второстепенную, – главная причина совсем другая. И если эту главную причину забыть, то мы действительно придем к выводу, что надо прыгать назад, а никак не вперед.
Пусть вам необходимо выпрыгнуть на ходу. Что произойдет при этом?
Когда мы прыгаем из двигающегося вагона, то тело наше, отделившись от вагона, обладает скоростью вагона (оно движется по инерции) и стремится двигаться вперед. Делая прыжок вперед, мы, конечно, не только не уничтожаем этой скорости, но, наоборот, еще увеличиваем ее.
Отсюда следует, что надо было бы прыгать назад, а вовсе не вперед, по направлению движения вагона. Ведь при прыжке назад скорость, сообщаемая прыжком, отнимается от скорости, с которой наше тело движется по инерции; вследствие этого, коснувшись земли, тело наше с меньшей силой будет стремиться опрокинуться.
Однако если уж и приходится прыгать из движущегося экипажа, то все прыгают вперед, по движению. Это действительно лучший способ и настолько проверенный, что мы настойчиво предостерегаем читателей от попыток проверить неудобство прыгания назад с движущегося экипажа.
Так в чем же дело?
В неверности объяснения, в его недоговоренности. Будем ли прыгать вперед, будем ли прыгать назад, – в том и другом случае нам грозит опасность упасть, так как верхняя часть туловища будет еще двигаться, когда ноги, коснувшись земли, остановятся[5 - Можно объяснить падение в этом случае также и с иной точки зрения (см. об этом «Занимательную механику», главу третью, статью «Когда горизонтальная линия не горизонтальна?»).]. Скорость этого движения при прыжке вперед даже больше, чем при прыжке назад. Но существенно важно то, что вперед падать гораздо безопаснее, чем падать назад. В первом случае мы привычным движением выставляем ногу вперед (а при большой скорости вагона – пробегаем несколько шагов) и тем предупреждаем падение. Это движение привычно, так как мы всю жизнь совершаем его при ходьбе: ведь с точки зрения механики, ходьба есть не что иное, как ряд падений нашего тела вперед, предупреждаемых выставлением ноги. При падении же назад нет этого спасительного движения ног, и оттого здесь опасность гораздо больше. Наконец, важно и то, что когда мы даже в самом деле упадем вперед, то выставив руки, расшибемся не так, как при падении на спину.
Итак, причина того, что безопаснее прыгать из вагона вперед, кроется не столько в законе инерции, сколько в нас самих. Ясно, что для предметов неживых правило это неприменимо; бутылка, брошенная из вагона вперед, скорее может разбиться при падении, нежели брошенная в обратном направлении. Поэтому, если вам придется почему-либо прыгать из вагона, выбросив предварительно свой багаж, следует кидать багаж назад, самим же прыгать вперед.
Люди опытные – кондукторы трамвая, контролеры – часто поступают так: прыгают назад, обратившись спиной по направлению прыжка. Этим достигается двоякая выгода: уменьшается скорость, приобретенная нашим телом по инерции, и, кроме того, предупреждается опасность падения на спину, так как прыгающий обращен передней стороной тела по направлению возможного падения.
Поймать боевую пулю руками
Во время империалистической войны, как сообщали газеты, с французским летчиком произошел совершенно необыкновенный случай. Летая на высоте двух километров, летчик заметил, что близ его лица движется какой-то мелкий предмет. Думая, что это насекомое, летчик проворно схватил его рукой. Представьте изумление летчика, когда оказалось, что он поймал… германскую боевую пулю!
Не правда ли, это напоминает россказни легендарного барона Мюнхгаузена, будто бы ловившего пушечные ядра руками?
А между тем в сообщении о летчике, поймавшем пулю, нет ничего невозможного.
Пуля ведь не все время движется со своей начальной скоростью 800–900 м в секунду. Из-за сопротивления воздуха она постепенно замедляет свой полет и к концу пути – на излете – делает всего метров 40 в секунду. Атакую скорость развивает и самолет. Значит, легко может случиться, что пуля и самолет будут иметь одинаковую скорость; тогда по отношению к летчику пуля будет неподвижна или будет двигаться едва заметно. Ничего не будет стоить тогда схватить ее рукой, – особенно в перчатке, потому что пуля, движущаяся в воздухе, сильно разогревается.
Почему заостренные предметы колючи?
Задумывались ли вы над вопросом: отчего игла так легко пронизывает предмет насквозь? Отчего сукно или картон легко проткнуть тонкой иглой и трудно пробить тупым гвоздем? В обоих случаях действует, казалось бы, одинаковая сила.
Сила одинакова, но давление все же не одинаково. В первом случае вся сила сосредоточивается на острие иглы; во втором – та же сила распределяется на большую площадь конца гвоздя; следовательно, давление иглы гораздо больше, нежели давление тупого стержня, при одном и том же усилии наших рук.
Каждый скажет, что борона с 20 зубьями глубже разрыхлит землю, чем борона того же веса, но с 60 зубьями. Почему? Потому что нагрузка на каждый зуб в первом случае больше, чем во втором.
Когда речь идет о давлении, всегда необходимо, кроме силы, принимать во внимание также и площадь, на которую эта сила действует. Когда нам говорят, что кто-либо получает 1000 рублей зарплаты, то мы не знаем еще, много это или мало; нужно знать – в год или в месяц? Точно так же и действие силы зависит от того, распределяется ли она на квадратный сантиметр или сосредоточивается на сотой доле квадратного миллиметра.
Человек на лыжах ходит по рыхлому снегу, а без лыж проваливается. Почему? Потому что в первом случае давление его тела распределяется на гораздо большую поверхность, чем во втором. Если поверхность лыж, например, в 20 раз больше поверхности наших подошв, то на лыжах мы давим на снег в 20 раз слабее, чем стоя на снегу прямо ногами. Рыхлый снег выдерживает первое давление, но не выдерживает второго.
По той же причине лошадям, работающим на болоте, подвязывают особые «башмаки» к копытам, чтобы увеличить площадь опоры ног и тем уменьшить давление на болотистую почву: ноги лошадей при этом не увязают в болоте. Так же поступают и люди в некоторых болотистых местностях.
По тонкому льду люди передвигаются ползком, чтобы распределить вес своего тела на большую площадь.
Наконец, характерная особенность танков и гусеничных тракторов не увязать в рыхлом грунте, несмотря на свой значительный вес, объясняется опять-таки распределением веса на большую поверхность опоры. Гусеничная машина весом 8 и более тонн оказывает на 1 кв. см грунта давление не более 600 г. С этой точки зрения интересен автомобиль на гусеничном ходу для перевозки грузов на болотах. Такой грузовик, везущий 2 тонны груза, оказывает на грунт давление всего 160 г на 1 кв. см; благодаря этому он хорошо ходит на торфяном болоте и по топким или песчаным местностям.
В этом случае большая площадь опоры так же выгодна технически, как малая площадь в случае иглы.
Из сказанного ясно, что острие прокалывает лишь благодаря незначительности площади, по которой распределяется действие силы. Совершенно по той же причине острый нож лучше режет, нежели тупой: сила сосредоточивается на меньшем пространстве.
Итак, заостренные предметы оттого хорошо колют и режут, что на их остриях и лезвиях сосредоточивается большое давление.
Наподобие Левиафана
Почему на простом табурете сидеть жестко, в то время как на стуле, тоже деревянном, нисколько не жестко? Почему мягко лежать в веревочном гамаке, который сплетен из довольно твердых шнурков? Почему не жестко лежать на проволочной сетке, устраиваемой в кроватях взамен пружинных матрасов?
Нетрудно догадаться. Сиденье простого табурета плоско; наше тело соприкасается с ним лишь по небольшой поверхности, на которой и сосредоточивается вся тяжесть туловища. У стула же сиденье вогнутое; оно соприкасается с телом по большей поверхности; по этой поверхности распределяется вес туловища: на единицу поверхности приходится меньший груз, меньшее давление.
Итак, все дело здесь в более равномерном распределении давления. Когда мы нежимся на мягкой постели, в ней образуются углубления, соответствующие неровностям нашего тела. Давление распределяется здесь по нижней поверхности тела довольно равномерно, так что на каждый квадратный сантиметр приходится всего несколько граммов. Неудивительно, что в этих условиях мы чувствуем себя хорошо.
Легко выразить это различие и в числах. Поверхность тела взрослого человека составляет около 2 кв. м, или 20 ООО кв. см. Допустим, что, когда мы лежим в постели, с ней соприкасается, опираясь на нее, приблизительно 1/4 всей поверхности нашего тела, т. е. 0,5 кв. м, или 5000 кв. см. Вес же нашего тела – около 60 кг (в среднем), или 60 000 г. Значит, на каждый квадратный сантиметр приходится всего 12 г. Когда же мы лежим на голых досках, то соприкасаемся с опорной плоскостью лишь в немногих маленьких участках, общей площадью в какую-нибудь сотню квадратных сантиметров.
На каждый квадратный сантиметр приходится, следовательно, давление в полкилограмма, а не в десяток граммов. Разница заметная, и мы сразу ощущаем ее на своем теле, говоря, что нам «очень жестко».
Но даже на самом твердом ложе нам может быть вовсе не жестко, если давление распределяется равномерно на большую поверхность. Вообразите, что вы легли на мягкую глину и в ней отпечатались формы вашего тела. Покинув глину, оставьте ее сохнуть (высыхая, глина «садится» на 5—10 %, но предположим, что этого не происходит). Когда она сделается твердой как камень, сохранив оставленные вашим телом вдавленности, лягте на нее опять, заполнив собой эту каменную форму. Вы почувствуете себя, как на нежном пуховике, не ощущая жесткости, хотя лежите буквально на камне. Вы уподобитесь легендарному Левиафану, о котором читаем в стихотворении Ломоносова:
На острых камнях возлегает
И твердость оных презирает
Для крепости великих сил,
Считая их за мягкий ил.
Но причина нашей нечувствительности к жесткости ложа будет не «крепость великих сил», а распределение веса тела на весьма большую опорную поверхность.
Пуля и воздух
Что воздух мешает полету пули, знают все, но лишь немногие представляют себе ясно, насколько велико это тормозящее действие воздуха. Большинство людей склонно думать, что такая нежная среда, как воздух, которого мы обычно даже и не чувствуем, не может сколько-нибудь заметно мешать стремительному полету ружейной пули.
Но взгляните на рис. 14, и вы поймете, что воздух является для пули препятствием чрезвычайно серьезным. Большая дуга на этом чертеже изображает путь, который пролетела бы пуля, если бы не существовало атмосферы. Покинув ствол ружья (под углом 45°, с начальной скоростью 620 м/сек), пуля описала бы огромную дугу в 10 км высотой; дальность полета пули составила бы почти 40 км. В действительности же пуля при указанных условиях описывает сравнительно небольшую дугу и дальность ее полета составляет 4 км. Изображенная на том же чертеже дуга эта почти незаметна рядом с первой; таков результат противодействия воздуха! Не будь воздуха, из винтовки можно было бы обстреливать неприятеля с расстояния 40 км, взметая свинцовый дождь на высоту 10 км.
Сверхдальняя стрельба
Обстреливать противника с расстояния в сотню и более километров впервые начала германская артиллерия к концу империалистической войны (1918 г.), когда успехи французской и английской авиации положили конец воздушным налетам немцев. Германский штаб избрал другой, артиллерийский, способ поражать столицу Франции, удаленную от фронта не менее чем на 110 км.
Способ этот был совершенно новый, никем еще не испытанный. Наткнулись на него немецкие артиллеристы случайно. При стрельбе из крупнокалиберной пушки под большим углом возвышения неожиданно обнаружилось, что вместо дальности в 20 км достигается дальность в 40 км. Оказалось, что снаряд, посланный круто вверх с большой начальной скоростью, достигает тех высоких разреженных слоев атмосферы, где сопротивление воздуха весьма незначительно; в такой слабо сопротивляющейся среде снаряд пролетает значительную часть своего пути и затем круто опускается на землю. Рис. 15 наглядно показывает, как велико различие в путях снарядов при изменении угла возвышения.
Это наблюдение и положено было немцами в основу проекта сверхдальнобойной пушки для обстрела Парижа с расстояния 115 км. Пушка была успешно изготовлена и в течение лета 1918 г. выпустила по Парижу свыше трехсот снарядов.
Вот что стало известно об этой пушке впоследствии. Это была огромная стальная труба в 34 м длиной и в целый метр толщиной; толщина стенок в казенной части – 40 см. Весило орудие 750 тонн. Его 120-килограммовые снаряды имели метр в длину и 21 см в толщину. Для заряда употреблялось 150 кг пороха; развивалось давление в 5000 атмосфер, которое и выбрасывало снаряд с начальной скоростью 2000 м/сек. Стрельба велась под углом возвышения 52°; снаряд описывал огромную дугу, высшая точка которой лежала на уровне 40 км над землей, т. е. далеко в стратосфере. Свой путь от позиции до Парижа – 115 км – снаряд проделывал в 3,5 минуты, из которых 2 минуты он летел в стратосфере.
Такова была первая сверхдальнобойная пушка, прародительница современной сверхдальнобойной артиллерии.
Чем больше начальная скорость пули (или снаряда), тем сопротивление воздуха значительнее: оно возрастает не пропорционально скорости, а быстрее, пропорционально второй и более высокой степени скорости, в зависимости от величины этой скорости.
Бумеранг
Это оригинальное оружие – самое совершенное произведение техники первобытного человека – долгое время вызывало изумление ученых. Действительно, странные, запутанные фигуры, описываемые бумерангом в воздухе (рис. 17), способны озадачить каждого.
В настоящее время теория полета бумеранга разработана весьма подробно и чудеса перестали быть чудесами. Вдаваться в эти интересные подробности мы не станем. Скажем лишь, что необычайные пути полета бумеранга являются результатом взаимодействия трех обстоятельств: 1) первоначального броска, 2) вращения бумеранга и 3) сопротивления воздуха. Австралиец инстинктивно умеет сочетать эти три фактора; он искусно изменяет угол наклона бумеранга, силу и направление броска, чтобы получить желаемый результат.