12. Цветная юла. Изготовить ее немного хлопотливо, но она вполне вознаграждает за затраченный труд, обнаруживая удивительные свойства. Выньте донышко из круглой аптечной коробочки и проткните его заостренным концом ненужной вставочки, зажав, для прочности, между двумя пробочными кружочками. Теперь разделите картонный кружок на одинаковые части прямыми линиями, идущими от середины к краям, как делят круглый торт, и полученные доли – математик сказал бы: «секторы» – закрасьте попеременно в желтый и синий цвет (черт. 17 – на темное кольцо пока не обращайте внимания). Что вы увидите, когда юла завертится? Кружок будет казаться не синим и не желтым, а – зеленым! Синий и желтый цвет, сливаясь в нашем глазу, дали новый цвет, зеленый.
Вы можете продолжить ваши опыты над «смешением цветов». Заготовьте кружок, «секторы» которого окрашены попеременно в голубой и оранжевый цвета. На этот раз кружок при вращении будет белый (вернее – серый, тем более светлый, чем чище ваши краски). В физике такие два цвета, которые при смешении дают белый, называются «дополнительными». Наша вертушка показала нам, следовательно, что голубой и оранжевый цвета – дополнительные.
Если у вас имеется хороший подбор красок, вы можете отважиться повторить опыт, впервые проделанный двести лет назад знаменитым английским ученым Ньютоном. А именно: раскрасьте секторы кружка семью цветами радуги – в фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный; при вращении все семь цветов должны слиться в белый (серовато-белый) цвет. Этот опыт поможет вам понять, что каждый луч белого солнечного света слагается из многих цветных лучей.
Видоизменение наших опытов с цветной юлой состоит в следующем: когда юла уже вертится, накиньте на нее бумажное кольцо (черт. 17) – кружок сразу изменит свой цвет.
13. Пишущая юла. Устройте юлу, как сейчас было рассказано, но только осью ее пусть будет не заостренный обрезок вставочки, а очинённый мягкий карандаш. Заставьте такую юлу вертеться на картонном листе, положенном немного наклонно. Юла будет, вращаясь, постепенно спускаться по наклонному картону, рисуя карандашом завитки. Их легко сосчитать, и так как каждый завиток образуется при одном обороте юлы, то, следя за ее вращением с часами в руках[4 - Очень полезно и совсем нетрудно приучиться – рядом упражнений – считать про себя: один, два, три и т. д. так, чтобы на каждое число уходила ровно секунда (лучше произносить так: один, и два, и три, и четыре…»). Тогда для измерения малых промежутков времени можно будет обходиться без часов.], нетрудно будет определить, сколько раз оборачивается юла каждую секунду. Просто глазом этого, конечно, сосчитать невозможно.
14. Другой вид пишущей юлы изображен на нашей таблице под номером 16-м. Чтобы ее изготовить, нужно добыть свинцовый кружок из тех, которые подшиваются портнихами к краям жакета, чтобы они оттягивали полы. В центре кружка нужно просверлить острием ножниц дырочку (свинец мягок, и сверлить его легко), а по обе стороны ее еще по дырочке, – как показано на рис. 15-м. Через среднюю дырочку надевают кружок на заостренную палочку, а через одну из боковых дырочек продевают отрезок конского волоса так, чтобы он высовывался вниз чуть больше оси юлы; в таком положении волос закрепляют обломком спички. Третья дырочка оставляется неиспользованной; мы просверлили ее только для того, чтобы свинцовый кружок по обе стороны оси имел совершенно одинаковый вес, – иначе юла не будет плавно и устойчиво вращаться. Теперь пишущая юла готова, но для опытов с нею нам нужно заготовить закопченную тарелку; подержав ее донышко близ пламени керосиновой лампы или свечки до тех пор, пока поверхность не покроется ровным слоем густой копоти, пускаем юлу по этой закопченной поверхности. Она будет, вращаясь, скользить по ней, а конский волос тем временем начертит белым по черному запутанный, но красивый узор.
15. Юлу – карусель, которую вы видите на черт. 19-м, сделать гораздо легче, чем кажется с первого взгляда. Кружок и осевой стержень здесь такие же, как в знакомой уже нам цветной юле (черт. 17). В кружок втыкают булавочки с флажками, располагая их симметрично около оси, и приклеивают крошечных бумажных лошадок с всадниками: маленькая карусель, для увеселения вашего юного братика или сестренки, готова.
Со временем вы узнаете гораздо более удивительные вещи про юлу или волчок; а пока запасайтесь наблюдениями над ними, отложив серьезное ознакомление с их свойствами до того времени, когда вы будете изучать две полезнейшие и интереснейшие науки – физику и механику.
4. Удар
Сталкиваются ли между собою две лодки, два трамвайных вагона или два крокетных шара; есть ли это несчастный случай или только очередной ход в игре, – физик обозначает происшествие одним коротким словом: удар. Удар длится краткий миг, но если ударяющиеся предметы, как обычно и бывает, упруги, – то в это быстрое мгновение успевает совершиться весьма многое. Физик различает три периода в каждом упругом ударе. В первом периоде удара оба столкнувшихся предмета сжимают друг друга в месте их соприкосновения. Во втором периоде взаимное сжатие достигает наибольшей степени; упругое противодействие, возникшее в ответ на сжатие, мешает дальнейшему сжатию, уравновешивая надавливающую силу. В третий период удара упругие силы противодействия, стремясь восстановить форму тела, измененную в течение первого периода, расталкивают предметы в противоположные стороны; ударяющий предмет как бы полностью получает свой удар обратно. И мы действительно наблюдаем, что если, например, крокетный шар ударяет в другой, неподвижный, одинакового веса, то вследствие этого обратного удара налетевший шар останавливается на месте, а шар, бывший неподвижным, откатывается со скоростью первого шара.
Очень интересно следить за тем, что происходит, когда шар налетает на целую цепь соприкасающихся шаров, выставленных прямой шеренгой. Удар, полученный крайним шаром, как бы проносится через цепь; но все шары остаются неподвижно на своих местах, и только крайний шар, самый отдаленный от места удара, стремительно отлетает в сторону.
Этот опыт можно проделать с крокетными шарами, еще он хорошо удается и с шашками или с монетами. Расположите шашки в прямой ряд – можете и очень длинный, и непременно так, чтобы они примыкали вплотную одна к другой; придержав пальцем крайнюю шашку, ударьте по ее ребру деревянной линейкой (см. рисунок): с другого конца отлетит крайняя шашка, но все промежуточные шашки сохранят свои места.
5. Яйцо в стакане
Клоуны в цирках часто изумляют публику тем, что сдергивают скатерть с накрытого стола, но вся столовая посуда – тарелки, стаканы, бутылки – невредимо остается на своих местах. Здесь нет ни чуда, ни обмана, – это дело ловкости, которая изощряется продолжительным упражнением.
Такого проворства рук вам, конечно, не достичь, – но проделать подобный же опыт в маленьком виде совсем не трудно. Приготовьте на столе стакан, до половины налитый водой, и почтовую карточку (еще лучше – половину ее); далее, попросите у старших ссудить вам для опыта широкое (мужское) обручальное кольцо и запасите яйцо, сваренное вкрутую, ради спокойствия хозяйки дома. Располагаете вы эти четыре предмета так: стакан с водой покрываете карточкой, на нее кладете кольцо, на которое опирается стоймя яйцо. Можно ли выдернуть карточку так, чтобы яйцо не покатилось на стол?
На первый взгляд это так же немыслимо, как выдернуть скатерть, не уронив расставленной на ней посуды. Но вы осуществляете эту кажущуюся невозможность одним удачным щелчком по краю карточки: карточка вышибается и летит на другой конец комнаты, а яйцо… яйцо вместе с кольцом оказываются невредимы в стакане с водой, которая смягчает удар и охраняет скорлупу от поломки.
Достигнув надлежащей ловкости, можно рискнуть проделать этот опыт и с сырым яйцом.
Физическая причина этого маленького чуда кроется в том, что, вследствие кратковременного удара, яйцо не успевает получить от вышибаемой карточки сколько-нибудь заметной скорости, между тем как сама карточка, непосредственно получившая удар, успевает выскользнуть; оставшись без опоры, яйцо падает по отвесному направлению в подставленный стакан.
На том же основан и следующий, еще более интересный опыт.
6. Необычайная поломка
Странствующие фокусники выполняют нередко очень красивый опыт, который кажется удивительным и необычайным, хотя довольно просто объясняется законами физики. На двух бумажных кольцах подвешивается довольно длинная палка; она опирается на них своими концами, сами же кольца перекинуты: одно – через лезвее бритвы, другое – через хрупкую курительную трубку (черт. 4). Фокусник берет другую палку и со всего размаха ударяет ею по первой. Лежащая палка ломается, а бумажные кольца… остаются невредимы!
Объяснение этого опыта то же, что и предыдущего: удар настолько краток, что не только бумажные кольца, но даже и концы ударяемой палки не успевают получить никакого перемещения; движется только та часть палки, которая непосредственно подвергалась удару, и палка переламывается. Секрет успеха, следовательно, в том, чтобы удар был быстр, отрывист. Удар медленный, вялый не переломит палки, а разорвет бумажные кольца.
Большие мастера среди фокусников ухитряются даже переламывать палку, опирающуюся на края двух тонких стаканов – и стекло остается неповрежденным.
Вам придется примириться с более скромным видоизменением того же опыта. Положите на край низкого стола или скамейки два карандаша так, чтобы часть их свободно выступала, и на эти свободные концы положите тонкую и длинную палочку. Сильный и быстрый удар линейкой по середине лежащей палочки переломит ее пополам, – но карандаши, на которые она опиралась концами, останутся на прежних местах.
Опыт этого рода объясняет вам, почему орех невозможно расколоть плавным, хотя и сильным давлением ладони, но очень легко раздробить сильным ударом кулака (черт. 2): в последнем случае удар не успевает распространиться по мясистой части кулака, и мягкие мускулы наши, не уступая напору ореха, действуют на него, как твердое тело.
По той же причине пуля пробивает в окне маленькую круглую дырочку, а брошенный рукой камешек, менее стремительно летящий, разбивает в осколки все стекло (черт. 3); еще более медленный толчок сможет повернуть оконную раму в петлях, чего ни пуля, ни камень сделать не могут.
Наконец, еще пример такого же явления представляет перерезывание стебля ударом прута (черт. 1). Напирая медленно прутом, хотя бы и с большой силой, вы стебля не перережете и только отклоните в сторону; ударив же с размаха, вы перережете его наверняка, если только, конечно, стебель не слишком толст. И здесь, как в предыдущих случаях, быстротой движения прута достигается то, что удар не успевает передаться всему стеблю и сосредоточивается только на небольшом, непосредственно затронутом участке, который и принимает на себя все последствия удара.
7. Наподобие подводной лодки
Свежее яйцо в воде тонет – это знает каждая опытная хозяйка и, когда желает убедиться, свежи ли яйца, испытывает их именно таким образом. Физик выводит из этого наблюдения то, что свежее яйцо весит больше, чем такой же объем чистой воды. Прибавляю: «чистой» потому, что нечистая – например соленая – вода весит больше. Можно приготовить такой густой раствор соли в воде, что яйцо будет легче вытесняемого им рассола, и тогда – по физическому закону плавания, открытому еще в древности знаменитым Архимедом – самое свежее яйцо будет в такой воде всплывать. Вы можете сыграть коварную шутку с хозяйкой, испугав ее тем, что вся сейчас купленная ею партия яиц нехороша: яйца всплывают в воде! (Разумеется, вы скроете от нее, что вода у вас соленая.)
Но лучше используйте ваши познания для следующего поучительного опыта, при котором вы заставите яйцо ни тонуть, ни всплывать, а, так сказать, висеть внутри жидкости; физик назвал бы такое состояние яйца «взвешенным». Для этого вы должны приготовить такой раствор соли в воде, чтобы погруженное в него яйцо вытесняло ровно столько рассола, сколько оно само весит. Получить подобный раствор можно только рядом проб, то немного подливая воды – если яйцо всплывает, то немного прибавляя более крепкого рассола – если яйцо тонет. При некотором терпении вы всегда найдете, наконец, требуемую крепость рассола, в котором погруженное яйцо не всплывает и не тонет, а остается неподвижным в том месте, куда его поместили.
В подобном состоянии находится подводная лодка. Она может держаться ниже уровня воды, не падая на дно, только тогда, когда весит ровно столько, сколько вытесняет воды. Чтобы придать ей как раз такой вес, экипаж лодки напускает внутрь ее, в особые вместилища, воду извне; когда же нужно подняться, воду выкачивают.
Дирижабль – не аэроплан, а именно дирижабль – плавает в воздухе на определенной высоте по той же самой причине: подобно яйцу в соленой воде, дирижабль вытесняет ровно столько пудов воздуха, сколько пудов он сам весит.
8. Бездонный стакан
Вы налили воды в стакан до самых краев. Больше не поместится ни одной капли. Что же будет, если в этот стакан с водой опустить булавку? Вода, скажете вы, должна перелиться через край. И уж, конечно, она перельется, если вздумаем опустить в полный стакан целую сотню булавок.
На деле же оказывается совсем не то, что вы ожидаете. Если осторожно, без сотрясений, опускать в наполненный водой стакан одну булавку за другой, то не только после десятой или после сотой, даже после двухсотой и трехсотой булавки вода не перельется за края стакана.
Как же это? Булавки разве не занимают никакого объема и не вытесняют воды? Конечно, они ее вытесняют. Так куда же она в таком случае девается? Не бездонный же у нас, в самом деле, стакан! Вы найдете разгадку, если внимательно всмотритесь в свободную поверхность воды вашего стакана. До опыта она была плоская, теперь же заметно вздулась, – и это вздутие воды занимает объем, равный объему всех потонувших булавок, вместе взятых.
При некоторой осторожности можно стакан с водою густо наполнить доверху булавками, так что они будут даже торчать выше его краев, – а вода все-таки не будет переливаться, и только сильное вздутие ее поверхности покажет, что булавки тоже занимают место. Картина получается для глаз удивительная: стакан воды и стакан булавок одновременно помещаются в одном стакане!
9. Плавучая игла
Можно ли заставить стальную иглу плавать на поверхности воды, как соломинку? Как будто бы невозможно: кусочек металла, хотя бы и самый маленький, должен непременно потонуть в воде. Так думают многие, и если вы думаете так же, то следующий опыт заставит вас переменить свое мнение.
Возьмите обыкновенную, только не слишком толстую швейную иголку, обмажьте ее слегка маслом или жиром и положите аккуратно на поверхность воды в ведерке или стакане. К вашему изумлению, игла не пойдет ко дну, а будет держаться на поверхности, наглядно опровергая всеобщую уверенность в том, что игла не может плавать.
Почему же, однако, она не тонет? Ведь сталь все-таки тяжелее воды? Безусловно, в 7–8 раз тяжелее, и, чтобы плавать, игла должна, по физическому закону плавания, вытеснять воды во столько же раз больше объемом, чем сама занимает. В нашем случае так и есть: если вы внимательно рассмотрите поверхность воды возле вашей плавающей иглы, то увидите, что близ нее вода образует вогнутость, небольшую долину, на дне которой и лежит игла (как показано в разрезе на рисунке в левом нижнем углу рисунка). Изгибается же водная поверхность возле нашей иглы потому, что игла, покрытая тонким слоем жира, не смачивается водой. Вы заметили, вероятно, что когда у вас руки жирные, то вода, налитая на них, оставляет кожу сухой, т. е. не смачивает ее. Перья гуся и всех вообще плавающих птиц всегда покрыты жиром, выделяемым особой железой; вот почему вода не пристает к ним («что с гуся вода»). Оттого-то без мыла – которое растворяет слой жира и удаляет его с кожи, – нельзя вымыть жирных рук даже и горячей содой. Жирная иголка тоже не смачивается водой и потому оказывается на дне водяной лощинки, объем которой настолько превышает объем иглы, что она поддерживается выталкивающей силой жидкости, как стальной дредноут на океане.
Так как руки наши всегда немного жирны, то и без намеренного обмазывания жиром игла в наших руках тоже покрыта тонким слоем его. Поэтому можно заставить иглу плавать, и не покрывая ее специально жиром, – надо только изловчиться очень осторожно положить ее на воду. Это можно сделать так: положить иглу на лоскуток папиросной бумаги, а затем, постепенно отгибая вниз края лоскутка другой иглой, погрузить всю бумажку под воду. Лоскуток упадет на дно, а игла останется на поверхности.
Если теперь вам случится наблюдать насекомое водомерку, шагающую по воде «яко по суху» (см. рис. на стр. 32, внизу), то вы уже не будете поставлены в тупик этим фактом, а догадаетесь, что лапки насекомого покрыты жиром и оттого не смачиваются водой. Шесть лапок водомерки, вместе взятые, вытесняют, благодаря этому, такой объем воды, который весит столько, сколько само насекомое, и тогда оно поддерживается на поверхности по мере движения.
10. Водолазный колокол
Для этого опыта годится обыкновенный умывальный таз, а если вы сможете получить глубокую и широкую банку, то опыт проделать еще удобнее. Кроме того, нужен высокий стакан или большой бокал – это и будет ваш «водолазный колокол», в то время как таз с водой представит уменьшенное подобие моря или озера.
Едва ли есть опыт проще этого: вы поворачиваете стакан вверх дном, погружаете его на дно таза, продолжая придерживать стакан рукой (чтобы вода его не вытолкнула). При этом будет видно, что вода внутрь стакана почти не проникает: воздух не допускает ее. Это становится гораздо нагляднее, когда под вашим «колоколом» находится какой-нибудь легко намокающий предмет, – например, кусочек сахара: положите на воду пробковый кружок, на него – сахар, и прикройте сверху стаканом. Теперь смело опускайте стакан в воду. Сахар очутится ниже уровня воды, но останется сухим, потому что вода под стакан не проникает. Вы видите на этом простом опыте, что воздух не есть «ничто», как мы привыкли думать; он занимает определенное место и неохотно уступает его другим вещам.
Этот опыт должен наглядно объяснить вам также, как могут люди находиться и работать под водой в водолазном колоколе или внутри тех широких труб, которые называются «кессонами», и как они погружаются ниже уровня воды в реке или озере: вода не проникает внутрь их по той же причине, по какой не втекает она под стакан в нашем опыте.
11. Тяжелая газета
Тонкую узкую дощечку длиною в руку или старую, ненужную чертежную линейку положите на стол так, чтобы половина ее свободно выступала за край. Стоит подуть на этот выступающий конец – и линейка падает. Показав вашим гостям, как легко линейку опрокинуть, предложите им сделать это ударом кулака по выступающему концу, если остальная часть линейки прикрыта листом газетной бумаги. Много ли весу в газете? Между тем окажется, что ее присутствие совершенно меняет дело: самый сильный удар не сможет опрокинуть линейки, словно она прибита к столу гвоздями. Нужно только позаботиться о том, чтобы газета была распластана аккуратно, прилегала к столу и самый лист был достаточно велик.
Чем же объяснить такое действие газеты? Почему она становится настолько тяжелой, что скорее можно сломать линейку, чем ее приподнять?