Оценить:
 Рейтинг: 0

On the Philosophy of Discovery, Chapters Historical and Critical

Год написания книги
2018
<< 1 2 3 4 5 6 7 >>
На страницу:
6 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

1. Character of the Practical Reformers.—We now come to a class of speculators who had perhaps a greater share in bringing about the change from stationary to progressive knowledge, than those writers who so loudly announced the revolution. The mode in which the philosophers of whom we now speak produced their impressions on men's minds, was very different from the procedure of the theoretical reformers. What these talked of, they did; what these promised, they performed. While the theorists concerning knowledge proclaimed that great advances were to be made, the practical discoverers went steadily forwards. While one class spoke of a complete Reform of scientific Methods, the other, boasting little, and often thinking little of Method, proved the novelty of their instrument by obtaining new results. While the metaphysicians were exhorting men to consult experience and the senses, the physicists were examining nature by such means with unparalleled success. And while the former, even when they did for a moment refer to facts, soon rushed back into their own region of ideas, and tried at once to seize the widest generalizations, the latter, fastening their attention upon the phenomena, and trying to reduce them to laws, were carried forwards by steps measured and gradual, such as no conjectural view of scientific method had suggested; but leading to truths as profound and comprehensive as any which conjecture had dared to anticipate. The theoretical reformers were bold, self-confident, hasty, contemptuous of antiquity, ambitious of ruling all future speculations, as they whom they sought to depose had ruled the past. The practical reformers were cautious, modest, slow, despising no knowledge, whether borrowed from tradition or observation, confident in the ultimate triumph of science, but impressed with the conviction that each single person could contribute a little only to its progress. Yet though thus working rather than speculating,—dealing with particulars more than with generals,—employed mainly in adding to knowledge, and not in defining what knowledge is, or how additions are to be made to it,—these men, thoughtful, curious, and of comprehensive minds, were constantly led to important views on the nature and methods of science. And these views, thus suggested by reflections on their own mental activity, were gradually incorporated with the more abstract doctrines of the metaphysicians, and had a most important influence in establishing an improved philosophy of science. The indications of such views we must now endeavour to collect from the writings of the discoverers of the times preceding the seventeenth century.

Some of the earliest of these indications are to be found in those who dealt with Art rather than with Science. I have already endeavoured to show that the advance of the arts which give us a command over the powers of nature, is generally prior to the formation of exact and speculative knowledge concerning those powers. But Art, which is thus the predecessor of Science, is, among nations of acute and active intellects, usually its parent. There operates, in such a case, a speculative spirit, leading men to seek for the reasons of that which they find themselves able to do. How slowly, and with what repeated deviations men follow this leading, when under the influence of a partial and dogmatical philosophy, the late birth and slow growth of sound physical theory shows. But at the period of which we now speak, we find men, at length, proceeding in obedience to the impulse which thus drives them from practice to theory;—from an acquaintance with phenomena to a free and intelligent inquiry concerning their causes.

2. Leonardo da Vinci.—I have already noted, in the History of Science, that the Indistinctness of Ideas, which was long one main impediment to the progress of science in the middle ages, was first remedied among architects and engineers. These men, so far at least as mechanical ideas were concerned, were compelled by their employments to judge rightly of the relations and properties of the materials with which they had to deal; and would have been chastised by the failure of their works, if they had violated the laws of mechanical truth. It was not wonderful, therefore, that these laws became known to them first. We have seen, in the History, that Leonardo da Vinci, the celebrated painter, who was also an engineer, is the first writer in whom we find the true view of the laws of equilibrium of the lever in the most general case. This artist, a man of a lively and discursive mind, is led to make some remarks[128 - His works have never been published, and exist in manuscript in the library of the Institute at Paris. Some extracts were published by Venturi, Essai sur les Ouvrages de Leonard da Vinci. Paris, 1797.] on the formation of our knowledge, which may show the opinions on that subject that already offered themselves at the beginning of the sixteenth century[129 - Leonardo died in 1520, at the age of 78.]. He expresses himself as follows:—"Theory is the general, Experiments are the soldiers. The interpreter of the artifices of nature is Experience: she is never deceived. Our judgment sometimes is deceived, because it expects effects which Experience refuses to allow." And again, "We must consult Experience, and vary the circumstances till we have drawn from them general rules; for it is she who furnishes true rules. But of what use, you ask, are these rules; I reply, that they direct us in the researches of nature and the operations of art. They prevent our imposing upon ourselves and others by promising ourselves results which we cannot obtain.

"In the study of the sciences which depend on mathematics, those who do not consult nature but authors, are not the children of nature, they are only her grandchildren. She is the true teacher of men of genius. But see the absurdity of men! They turn up their noses at a man who prefers to learn from nature herself rather than from authors who are only her clerks."

In another place, in reference to a particular case, he says, "Nature begins from the Reason and ends in Experience; but for all that, we must take the opposite course; begin from the Experiment and try to discover the Reason."

Leonardo was born forty-six years before Telesius; yet we have here an estimate of the value of experience far more just and substantial than the Calabrian school ever reached. The expressions contained in the above extracts, are well worthy our notice;—that experience is never deceived;—that we must vary our experiments, and draw from them general rules;—that nature is the original source of knowledge, and books only a derivative substitute;—with a lively image of the sons and grandsons of nature. Some of these assertions have been deemed, and not without reason, very similar to those made by Bacon a century later. Yet it is probable that the import of such expressions, in Leonardo's mind, was less clear and definite than that which they acquired by the progress of sound philosophy. When he says that theory is the general and experiments the soldiers, he probably meant that theory directs men what experiments to make; and had not in his mind the notion of a theoretical Idea ordering and brigading the Facts. When he says that Experience is the interpreter of Nature, we may recollect, that in a more correct use of this image, Experience and Nature are the writing, and the Intellect of man the interpreter. We may add, that the clear apprehension of the importance of Experience led, in this as in other cases, to an unjust depreciation of the value of what science owed to books. Leonardo would have made little progress, if he had attempted to master a complex science, astronomy for instance, by means of observation alone, without the aid of books.

But in spite of such criticism, Leonardo's maxims show extraordinary sagacity and insight; and they appear to us the more remarkable, when we see how rare such views are for a century after his time.

3. Copernicus.—For we by no means find, even in those practical discoverers to whom, in reality, the revolution in science, and consequently in the philosophy of science, was due, this prompt and vigorous recognition of the supreme authority of observation as a ground of belief; this bold estimate of the probable worthlessness of traditional knowledge; and this plain assertion of the reality of theory founded upon experience. Among such discoverers, Copernicus must ever hold a most distinguished place. The heliocentric theory of the universe, established by him with vast labour and deep knowledge, was, for the succeeding century, the field of discipline and exertion of all the most active speculative minds. Men, during that time, proved their freedom of thought, their hopeful spirit, and their comprehensive view, by adopting, inculcating, and following out the philosophy which this theory suggested. But in the first promulgation of the theory, in the works of Copernicus himself, we find a far more cautious and reserved temper. He does not, indeed, give up the reality of his theory, but he expresses himself so as to avoid shocking those who might (as some afterwards did) think it safe to speak of it as an hypothesis rather than a truth. In his preface addressed to the Pope[130 - Paul III. in 1543.], after speaking of the difficulties in the old and received doctrines, by which he was led to his own theory, he says, "Hence I began to think of the mobility of the earth; and although the opinion seemed absurd, yet because I knew that to others before me this liberty had been conceded, of imagining any kinds of circles in order to explain the phenomena of the stars, I thought it would also be readily granted me, that I might try whether, by supposing the earth to be in motion, I might not arrive at a better explanation than theirs, of the revolutions of the celestial orbs." Nor does he anywhere assert that the seeming absurdity had become a certain truth, or betray any feeling of triumph over the mistaken belief of his predecessors. And, as I have elsewhere shown, his disciples[131 - Hist. Ind. Sc. b. v. c. ii.] indignantly and justly defended him from the charge of disrespect towards Ptolemy and other ancient astronomers. Yet Copernicus is far from compromising the value or evidence of the great truths which he introduced to general acceptance; and from sinking in his exposition of his discoveries below the temper which had led to them. His quotation from Ptolemy, that "He who is to follow philosophy must be a freeman in mind," is a grand and noble maxim, which it well became him to utter.

4. Fabricius.—In another of the great discoverers of this period, though employed on a very different subject, we discern much of the same temper. Fabricius of Acquapendente[132 - Born 1537, died 1619.], the tutor and forerunner of our Harvey, and one of that illustrious series of Paduan professors who were the fathers of anatomy[133 - Hist. Ind. Sc. b. xvii. c. ii. sect. 1.], exhibits something of the same respect for antiquity, in the midst of his original speculations. Thus in a dissertation[134 - Fabricius, De Motu Locali, p. 182.]On the Action of the Joints, he quotes Aristotle's Mechanical Problems to prove that in all animal motion there must be some quiescent fulcrum; and finds merit even in Aristotle's ignorance. "Aristotle," he says[135 - p. 199.], "did not know that motion was produced by the muscle; and after staggering about from one supposition to another, at last is compelled by the facts themselves to recur to an innate spirit, which, he conceives, is contrasted, and which pulls and pushes. And here we cannot help admiring the genius of Aristotle, who, though ignorant of the muscle, invents something which produces nearly the same effect as the muscle, namely, contraction and pulling." He then, with great acuteness, points out the distinction between Aristotle's opinions, thus favourably interpreted, and those of Galen. In all this, we see something of the wish to find all truths in the writings of the ancients, but nothing which materially interferes with freedom of inquiry. The anatomists have in all ages and countries been practically employed in seeking knowledge from observation. Facts have ever been to them a subject of careful and profitable study; while the ideas which enter into the wider truths of the science, are, as we have seen, even still involved in obscurity, doubt, and contest.

5. Maurolycus.—Francis Maurolycus of Messana, whose mathematical works were published in 1575, was one of the great improvers of the science of optics in his time. In his Preface to his Treatise on the Spheres, he speaks of previous writers on the same subject; and observes that as they have not superseded one another, they have not rendered it unfit for any one to treat the subject afresh. "Yet," he says, "it is impossible to amend the errors of all who have preceded us. This would be a task too hard for Atlas, although he supports the heavens. Even Copernicus is tolerated, who makes the sun to be fixed, and the earth to move round it in a circle, and who is more worthy of a whip or a scourge than of a refutation." The mathematicians and astronomers of that time were not the persons most sensible of the progress of physical knowledge; for the basis of their science, and a great part of its substance, were contained in the writings of the ancients; and till the time of Kepler, Ptolemy's work was, very justly, looked upon as including all that was essential in the science.

6. Benedetti.—But the writers on Mechanics were naturally led to present themselves as innovators and experimenters; for all that the ancients had taught concerning the doctrine of motion was erroneous; while those who sought their knowledge from experiment, were constantly led to new truths. John Baptist Benedetti, a Venetian nobleman, in 1599, published his Speculationum Liber, containing, among other matter, a treatise on Mechanics, in which several of the Aristotelian errors were refuted. In the Preface to this Treatise, he says, "Many authors have written much, and with great ability, on Mechanics; but since nature is constantly bringing to light something either new, or before unnoticed, I too wished to put forth a few things hitherto unattempted, or not sufficiently explained." In the doctrine of motion he distinctly and at some length condemns and argues against all the Aristotelian doctrines concerning motion, weight, and many other fundamental principles of physics. Benedetti is also an adherent of the Copernican doctrine. He states[136 - Speculationum Liber, p. 195.] the enormous velocity which the heavenly bodies must have, if the earth be the centre of their motions; and adds, "which difficulty does not occur according to the beautiful theory of the Samian Aristarchus, expounded in a divine manner by Nicolas Copernicus; against which the reasons alleged by Aristotle are of no weight." Benedetti throughout shows no want of the courage or ability which were needed in order to rise in opposition against the dogmas of the Peripatetics. He does not, however, refer to experiment in a very direct manner; indeed most of the facts on which the elementary truths of mechanics rest, were known and admitted by the Aristotelians; and therefore could not be adduced as novelties. On the contrary, he begins with à priori maxims, which experience would not have confirmed. "Since," he says[137 - Ibid. p. 169.], "we have undertaken the task of proving that Aristotle is wrong in his opinions concerning motion, there are certain absolute truths, the objects of the intellect known of themselves, which we must lay down in the first place." And then, as an example of these truths, he states this: "Any two bodies of equal size and figure, but of different materials, will have their natural velocities in the same proportion as their weights;" where by their natural velocities, he means the velocities with which they naturally fall downwards.

7. Gilbert.—The greatest of these practical reformers of science is our countryman, William Gilbert; if, indeed, in virtue of the clear views of the prospects which were then opening to science, and of the methods by which her future progress was to be secured, while he exemplified those views by physical discoveries, he does not rather deserve the still higher praise of being at the same time a theoretical and a practical reformer. Gilbert's physical researches and speculations were employed principally upon subjects on which the ancients had known little or nothing; and on which therefore it could not be doubtful whether tradition or observation was the source of knowledge. Such was magnetism; for the ancients were barely acquainted with the attractive property of the magnet. Its polarity, including repulsion as well as attraction, its direction towards the north, its limited variation from this direction, its declination from the horizontal position, were all modern discoveries. Gilbert's work[138 - Gulielmi Gilberti, Colcestriensis, Medici Londinensis, De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure, Physiologia Nova, plurimis et Argumentis et Experimentis demonstrata.] on the magnet and on the magnetism of the earth, appeared in 1600; and in this, he repeatedly maintains the superiority of experimental knowledge over the physical philosophy of the ancients. His preface opens thus: "Since in making discoveries and searching out the hidden causes of things, stronger reasons are obtained from trustworthy experiments and demonstrable arguments, than from probable conjectures and the dogmas of those who philosophize in the usual manner," he has, he says, "endeavoured to proceed from common magnetical experiments to the inward constitution of the earth." As I have stated in the History of Magnetism[139 - Hist. Ind. Sc. b. xii. c. i.], Gilbert's work contains all the fundamental facts of that science, so fully stated, that we have, at this day, little to add to them. He is not, however, by the advance which he thus made, led to depreciate the ancients, but only to claim for himself the same liberty of philosophizing which they had enjoyed[140 - Pref.]. "To those ancient and first parents of philosophy, Aristotle, Theophrastus, Ptolemy, Hippocrates, Galen, be all due honour; from them it was that the stream of wisdom has been derived down to posterity. But our age has discovered and brought to light many things which they, if they were yet alive, would gladly embrace. Wherefore we also shall not hesitate to expound, by probable hypotheses, those things which by long experience we have ascertained."

In this work the author not only adopts the Copernican doctrine of the earth's motion, but speaks[141 - De Magnete, lib. vi. c. 3, 4.] of the contrary supposition as utterly absurd, founding his argument mainly on the vast velocities which such a supposition requires us to ascribe to the celestial bodies. Dr. Gilbert was physician to Queen Elizabeth and to James the First, and died in 1603. Some time after his death the executors of his brother published another work of his, De Mundo nostro Sublunari Philosophia Nova, in which similar views are still more comprehensively presented. In this he says, "The two lords of philosophy, Aristotle and Galen, are held in worship like gods, and rule the schools;—the former by some destiny obtained a sway and influence among philosophers, like that of his pupil Alexander among the kings of the earth;—Galen, with like success, holds his triumph among the physicians of Europe." This comparison of Aristotle to Alexander was also taken hold of by Bacon. Nor is Gilbert an unworthy precursor of Bacon in the view he gives of the History of Science, which occupies the first three chapters of his Philosophy. He traces this history from "the simplicity and ignorance of the ancients," through "the fabrication of the fable of the four elements," to Aristotle and Galen. He mentions with due disapproval the host of commentators which succeeded, the alchemists, the "shipwreck of science in the deluge of the Goths," and the revival of letters and genius in the time of "our grandfathers." "This later age," he says, "has exploded the Barbarians, and restored the Greeks and Latins to their pristine grace and honour. It remains, that if they have written aught in error, this should be remedied by better and more productive processes (frugiferis institutis), not to be contemned for their novelty; (for nothing which is true is really new, but is perfect from eternity, though to weak man it may be unknown;) and that thus Philosophy may bear her fruit." The reader of Bacon will not fail to recognize, in these references to "fruit-bearing" knowledge, a similarity of expression with the Novum Organon.

Bacon does not appear to me to have done justice to his contemporary. He nowhere recognizes in the labours of Gilbert a community of purpose and spirit with his own. On the other hand, he casts upon him a reflection which he by no means deserves. In the Advancement of Learning[142 - Nov. Org. b. i.], he says, "Another error is, that men have used to infect their meditations, opinions, and doctrines, with some conceits which they have most admired, or some sciences to which they have most applied; and given all things else a tincture according to them, utterly untrue and improper.... So have the alchemists made a philosophy out of a few experiments of the furnace; and Gilbertus, our countryman, hath made a philosophy out of the observations of a loadstone," (in the Latin, philosophiam etiam e magnete elicuit). And in the same manner he mentions him in the Novum Organon[143 - B. i. Aph. 64.], as affording an example of an empirical kind of philosophy, which appears to those daily conversant with the experiments, probable, but to other persons incredible and empty. But instead of blaming Gilbert for disturbing and narrowing science by a too constant reference to magnetical rules, we might rather censure Bacon, for not seeing how important in all natural philosophy are those laws of attraction and repulsion of which magnetical phenomena are the most obvious illustration. We may find ground for such a judgment in another passage in which Bacon speaks of Gilbert. In the Second Book[144 - Vol. ix. 185.] of the Novum Organon, having classified motions, he gives, as one kind, what he calls, in his figurative language, motion for gain, or motion of need, by which a body shuns heterogeneous, and seeks cognate bodies. And he adds, "The Electrical operation, concerning which Gilbert and others since him have made up such a wonderful story, is nothing less than the appetite of a body, which, excited by friction, does not well tolerate the air, and prefers another tangible body if it be found near." Bacon's notion of an appetite in the body is certainly much less philosophical than Gilbert's, who speaks of light bodies as drawn towards amber by certain material radii[145 - De Magnete, p. 60.]; and we might perhaps venture to say that Bacon here manifests a want of clear mechanical ideas. Bacon, too, showed his inferior aptitude for physical research in rejecting the Copernican doctrine which Gilbert adopted. In the Advancement of Learning[146 - B. iii. c. 4.], suggesting a history of the opinions of philosophers, he says that he would have inserted in it even recent theories, as those of Paracelsus; of Telesius, who restored the philosophy of Parmenides; or Patricius, who resublimed the fumes of Platonism; or Gilbert, who brought back the dogmas of Philolaus. But Bacon quotes[147 - Nov. Org. b. ii. Aph. 48.] with pleasure Gilbert's ridicule of the Peripatetics' definition of heat. They had said, that heat is that which separates heterogeneous and unites homogeneous matter; which, said Gilbert, is as if any one were to define man as that which sows wheat and plants vines.

Galileo, another of Gilbert's distinguished contemporaries, had a higher opinion of him. He says[148 - Drinkwater's Life of Galileo, p. 18.], "I extremely admire and envy this author. I think him worthy of the greatest praise for the many new and true observations which he has made, to the disgrace of so many vain and fabling authors; who write, not from their own knowledge only, but repeat everything they hear from the foolish and vulgar, without attempting to satisfy themselves of the same by experience; perhaps that they may not diminish the size of their books."

8. Galileo.—Galileo was content with the active and successful practice of experimental inquiry; and did not demand that such researches should be made expressly subservient to that wider and more ambitious philosophy, on which the author of the Novum Organon employed his powers. But still it now becomes our business to trace those portions of Galileo's views which have reference to the theory, as well as the practice, of scientific investigation. On this subject, Galileo did not think more profoundly, perhaps, than several of his contemporaries; but in the liveliness of expression and illustration with which he recommended his opinions on such topics, he was unrivalled. Writing in the language of the people, in the attractive form of dialogue, with clearness, grace, and wit, he did far more than any of his predecessors had done to render the new methods, results, and prospects of science familiar to a wide circle of readers, first in Italy, and soon, all over Europe. The principal points inculcated by him were already becoming familiar to men of active and inquiring minds; such as,—that knowledge was to be sought from observation, and not from books;—that it was absurd to adhere to, and debate about, the physical tenets of Aristotle and the rest of the ancients. On persons who followed this latter course, Galileo fixed the epithet of Paper Philosophers[149 - Life of Galileo, p. 9.]; because, as he wrote in a letter to Kepler, this sort of men fancied that philosophy was to be studied like the Æneid or Odyssey, and that the true reading of nature was to be detected by the collation of texts. Nothing so much shook the authority of the received system of Physics as the experimental discoveries, directly contradicting it, which Galileo made. By experiment, as I have elsewhere stated[150 - Hist. Ind. Sc. b. vi. c. ii. sect. 5.], he disproved the Aristotelian doctrine that bodies fall quickly or slowly in proportion to their weight. And when he had invented the telescope, a number of new discoveries of the most striking kind (the inequalities of the moon's surface, the spots in the sun, the moon-like phases of Venus, the satellites of Jupiter, the ring of Saturn,) showed, by the evidence of the eyes, how inadequate were the conceptions, and how erroneous the doctrines of the ancients, respecting the constitution of the universe. How severe the blow was to the disciples of the ancient schools, we may judge by the extraordinary forms of defence in which they tried to intrench themselves. They would not look through Galileo's glasses; they maintained that what was seen was an illusion of witchcraft; and they tried, as Galileo says[151 - Life of Galileo, p. 29.], with logical arguments, as if with magical incantations, to charm the new planets out of the sky. No one could be better fitted than Galileo for such a warfare. His great knowledge, clear intellect, gaiety, and light irony, (with the advantage of being in the right,) enabled him to play with his adversaries as he pleased. Thus when an Aristotelian[152 - Ibid. p. 33.] rejected the discovery of the irregularities in the moon's surface, because, according to the ancient doctrine, her form was a perfect sphere, and held that the apparent cavities were filled with an invisible crystal substance, Galileo replied, that he had no objection to assent to this, but that then he should require his adversary in return to believe that there were on the same surface invisible crystal mountains ten times as high as those visible ones which he had actually observed and measured.

We find in Galileo many thoughts which have since become established maxims of modern philosophy. "Philosophy," he says[153 - Il Saggiatore, ii. 247.], "is written in that great book, I mean the Universe, which is constantly open before our eyes; but it cannot be understood, unless we first know the language and learn the characters in which it is written." With this thought he combines some other lively images. One of his interlocutors says concerning another, "Sarsi perhaps thinks that philosophy is a book made up of the fancies of men, like the Iliad or Orlando Furioso, in which the matter of least importance is, that what is written be true." And again, with regard to the system of authority, he says, "I think I discover in him a firm belief that, in philosophizing, it is necessary to lean upon the opinion of some celebrated author; as if our mind must necessarily remain unfruitful and barren till it be married to another man's reason."—"No," he says, "the case is not so.—When we have the decrees of Nature, authority goes for nothing; reason is absolute[154 - Il Saggiatore, ii. 200.]."

In the course of Galileo's controversies, questions of the logic of science came under discussion. Vincenzio di Grazia objected to a proof from induction which Galileo adduced, because all the particulars were not enumerated; to which the latter justly replies[155 - Ibid. i. 501.], that if induction were required to pass through all the cases, it would be either useless or impossible;—impossible when the cases are innumerable; useless when they have each already been verified, since then the general proposition adds nothing to our knowledge.

One of the most novel of the characters which Science assumes in Galileo's hands is, that she becomes cautious. She not only proceeds leaning upon Experience, but she is content to proceed a little way at a time. She already begins to perceive that she must rise to the heights of knowledge by many small and separate steps. The philosopher is desirous to know much, but resigned to be ignorant for a time of that which cannot yet be known. Thus when Galileo discovered the true law of the motion of a falling body[156 - Hist. Ind. Sc. b. vi. c. ii. sect. 2.], that the velocity increases proportionally to the time from the beginning of the fall, he did not insist upon immediately assigning the cause of this law. "The cause of the acceleration of the motions of falling bodies is not," he says, "a necessary part of the investigation." Yet the conception of this acceleration, as the result of the continued action of the force of gravity upon the falling body, could hardly fail to suggest itself to one who had formed the idea of force. In like manner, the truth that the velocities, acquired by bodies falling down planes of equal heights, are all equal, was known to Galileo and his disciples, long before he accounted for it[157 - Hist. Ind. Sc. b. vi. c. ii. sect. 4.], by the principle, apparently so obvious, that the momentum generated is as the moving force which generates it. He was not tempted to rush at once, from an experimental truth to a universal system. Science had learnt that she must move step by step; and the gravity of her pace already indicated her approaching maturity and her consciousness of the long path which lay before her.

But besides the genuine philosophical prudence which thus withheld Galileo from leaping hastily from one inference to another, he had perhaps a preponderating inclination towards facts; and did not feel, so much as some other persons of his time, the need of reducing them to ideas. He could bear to contemplate laws of motion without being urged by an uncontrollable desire to refer them to conceptions of force.

9. Kepler.—In this respect his friend Kepler differed from him; for Kepler was restless and unsatisfied till he had reduced facts to laws, and laws to causes; and never acquiesced in ignorance, though he tested with the most rigorous scrutiny that which presented itself in the shape of knowledge to fill the void. It may be seen in the History of Astronomy[158 - Ibid. b. v. c. iv. sect. 1.] with what perseverance, energy, and fertility of invention, Kepler pursued his labours, (enlivened and relieved by the most curious freaks of fancy,) with a view of discovering the rules which regulate the motions of the planet Mars. He represents this employment under the image of a warfare; and describes[159 - De Stell. Mart. p. iv. c. 51 (1609); Drinkwater's Kepler, p. 33.] his object to be "to triumph over Mars, and to prepare for him, as for one altogether vanquished, tabular prisons and equated eccentric fetters;" and when, "the enemy, left at home a despised captive, had burst all the chains of the equations, and broken forth of the prisons of the tables;"—when "it was buzzed here and there that the victory is vain, and that the war is raging anew as violently as before;"—that is, when the rules which he had proposed did not coincide with the facts;—he by no means desisted from his attempts, but "suddenly sent into the field a reserve of new physical reasonings on the rout and dispersion of the veterans," that is, tried new suppositions suggested by such views as he then entertained of the celestial motions. His efforts to obtain the formal laws of the planetary motions resulted in some of the most important discoveries ever made in astronomy; and if his physical reasonings were for the time fruitless, this arose only from the want of that discipline in mechanical ideas which the minds of mathematicians had still to undergo; for the great discoveries of Newton in the next generation showed that, in reality, the next step of the advance was in this direction. Among all Kepler's fantastical expressions, the fundamental thoughts were sound and true; namely, that it was his business, as a physical investigator, to discover a mathematical rule which governed and included all the special facts; and that the rules of the motions of the planets must conform to some conception of causation.

The same characteristics,—the conviction of rule and cause, perseverance in seeking these, inventiveness in devising hypotheses, love of truth in trying and rejecting them, and a lively Fancy playing with the Reason without interrupting her,—appear also in his work on Optics; in which he tried to discover the exact law of optical refraction[160 - Published 1604. Hist. Ind. Sc. b. ix. c. ii.]. In this undertaking he did not succeed entirely; nor does he profess to have done so. He ends his numerous attempts by saying, "Now, reader, you and I have been detained sufficiently long while I have been attempting to collect into one fagot the measures of different refractions."

In this and in other expressions, we see how clearly he apprehended that colligation of facts which is the main business of the practical discoverer. And by his peculiar endowments and habits, Kepler exhibits an essential portion of this process, which hardly appears at all in Galileo. In order to bind together facts, theory is requisite as well as observation,—the cord as well as the fagots. And the true theory is often, if not always, obtained by trying several and selecting the right. Now of this portion of the discoverer's exertions, Kepler is a most conspicuous example. His fertility in devising suppositions, his undaunted industry in calculating the results of them, his entire honesty and candour in resigning them if these results disagreed with the facts, are a very instructive spectacle; and are fortunately exhibited to us in the most lively manner in his own garrulous narratives. Galileo urged men by precept as well as example to begin their philosophy from observation; Kepler taught them by his practice that they must proceed from observation by means of hypotheses. The one insisted upon facts; the other dealt no less copiously with ideas. In the practical, as in the speculative portion of our history, this antithesis shows itself; although in the practical part we cannot have the two elements separated, as in the speculative we sometimes have.

In the History of Science[161 - Hist. Ind. Sc. b. v. c. iv. sect. i.], I have devoted several pages to the intellectual character of Kepler, inasmuch as his habit of devising so great a multitude of hypotheses, so fancifully expressed, had led some writers to look upon him as an inquirer who transgressed the most fixed rules of philosophical inquiry. This opinion has arisen, I conceive, among those who have forgotten the necessity of Ideas as well as Facts for all theory; or who have overlooked the impossibility of selecting and explicating our ideas without a good deal of spontaneous play of the mind. It must, however, always be recollected that Kepler's genius and fancy derived all their scientific value from his genuine and unmingled love of truth. These qualities appeared, not only in the judgment he passed upon hypotheses, but also in matters which more immediately concerned his reputation. Thus when Galileo's discovery of the telescope disproved several opinions which Kepler had published and strenuously maintained, he did not hesitate a moment to retract his assertions and range himself by the side of Galileo, whom he vigorously supported in his warfare against those who were incapable of thus cheerfully acknowledging the triumph of new facts over their old theories.

10. Tycho.—There remains one eminent astronomer, the friend and fellow-labourer of Kepler, whom we must not separate from him as one of the practical reformers of science. I speak of Tycho Brahe, who is, I think, not justly appreciated by the literary world in general, in consequence of his having made a retrograde step in that portion of astronomical theory which is most familiar to the popular mind. Though he adopted the Copernican view of the motion of the planets about the sun, he refused to acknowledge the annual and diurnal motion of the earth. But notwithstanding this mistake, into which he was led by his interpretation of Scripture rather than of nature, Tycho must ever be one of the greatest names in astronomy. In the philosophy of science also, the influence of what he did is far from inconsiderable; and especially its value in bringing into notice these two points:—that not only are observations the beginning of science, but that the progress of science may often depend upon the observer's pursuing his task regularly and carefully for a long time, and with well devised instruments; and again, that observed facts offer a succession of laws which we discover as our observations become better, and as our theories are better adapted to the observations. With regard to the former point, Tycho's observatory was far superior to all that had preceded it[162 - Hist. Ind. Sc. b. vii. c. vi. sect 1.], not only in the optical, but in the mechanical arrangements; a matter of almost equal consequence. And hence it was that his observations inspired in Kepler that confidence which led him to all his labours and all his discoveries. "Since," he says[163 - De Stell. Mart. p. 11. c. 19.], "the divine goodness has given us in Tycho Brahe an exact observer, from whose observations this error of eight minutes in the calculations of the Ptolemaic hypothesis is detected, let us acknowledge and make use of this gift of God: and since this error cannot be neglected, these eight minutes alone have prepared the way for an entire reform of Astronomy, and are to be the main subject of this work."

With regard to Tycho's discoveries respecting the moon, it is to be recollected that besides the first inequality of the moon's motion, (the equation of the centre, arising from the elliptical form of her orbit,) Ptolemy had discovered a second inequality, the evection, which, as we have observed in the History of this subject[164 - Hist. Ind. Sc. b. ii. c. iv. sect. 6.], might have naturally suggested the suspicion that there were still other inequalities. In the middle ages, however, such suggestions, implying a constant progress in science, were little attended to; and, we have seen, that when an Arabian astronomer[165 - Ibid. sect. 8.] had really discovered another inequality of the moon, it was soon forgotten, because it had no place in the established systems. Tycho not only rediscovered the lunar inequality, (the variation,) thus once before won and lost, but also two other inequalities; namely[166 - Montucla, i. 566.], the change of inclination of the moon's orbit as the line of nodes moves round, and an inequality in the motion of the line of nodes. Thus, as I have elsewhere said, it appeared that the discovery of a rule is a step to the discovery of deviations from that rule, which require to be expressed in other rules. It became manifest to astronomers, and through them to all philosophers, that in the application of theory to observation, we find, not only the stated phenomena, for which the theory does account, but also residual phenomena, which are unaccounted for, and remain over and above the calculation. And it was seen further, that these residual phenomena might be, altogether or in part, exhausted by new theories.

These were valuable lessons; and the more valuable inasmuch as men were now trying to lay down maxims and methods for the conduct of science. A revolution was not only at hand, but had really taken place, in the great body of real cultivators of science. The occasion now required that this revolution should be formally recognized;—that the new intellectual power should be clothed with the forms of government;—that the new philosophical republic should be acknowledged as a sister state by the ancient dynasties of Aristotle and Plato. There was needed some great Theoretical Reformer, to speak in the name of the Experimental Philosophy; to lay before the world a declaration of its rights and a scheme of its laws. And thus our eyes are turned to Francis Bacon, and others who like him attempted this great office. We quit those august and venerable names of discoverers, whose appearance was the prelude and announcement of the new state of things then opening; and in doing so, we may apply to them the language which Bacon applies to himself[167 - De Augm. lib. iv. c. 1.]:—

Χαίρετε Κήρυκες Διὸ ς ἄγγελοι ἠδὲ καὶ ἀνδρῶν

Hail, Heralds, Messengers of Gods and Men!

CHAPTER XV.

Francis Bacon

(I.) 1. General Remarks.—It is a matter of some difficulty to speak of the character and merits of this illustrious man, as regards his place in that philosophical history with which we are here engaged. If we were to content ourselves with estimating him according to the office which, as we have just seen, he claims for himself[168 - And in other passages: thus, "Ego enim buccinator tantum pugnam non ineo." Nov. Org. lib. iv. c. i.], as merely the harbinger and announcer of a sounder method of scientific inquiry than that which was recognized before him, the task would be comparatively easy. For we might select from his writings those passages in which he has delivered opinions and pointed out processes, then novel and strange, but since confirmed by the experience of actual discoverers, and by the judgments of the wisest of succeeding philosophers; and we might pass by, without disrespect, but without notice, maxims and proposals which have not been found available for use;—views so indistinct and vague, that we are even yet unable to pronounce upon their justice;—and boundless anticipations, dictated by the sanguine hopes of a noble and comprehensive intellect. But if we thus reduce the philosophy of Bacon to that portion which the subsequent progress of science has rigorously verified, we shall have to pass over many of those declarations which have excited most notice in his writings, and shall lose sight of many of those striking thoughts which his admirers most love to dwell upon. For he is usually spoken of, at least in this country, as a teacher who not only commenced, but in a great measure completed, the Philosophy of Induction. He is considered, not only as having asserted some general principles, but laid down the special rules of scientific investigation; as not only one of the Founders, but the supreme Legislator of the modern Republic of Science; not only the Hercules who slew the monsters that obstructed the earlier traveller, but the Solon who established a constitution fitted for all future time.

2. Nor is it our purpose to deny that of such praise he deserves a share which, considering the period at which he lived, is truly astonishing. But it is necessary for us in this place to discriminate and select that portion of his system which, bearing upon physical science, has since been confirmed by the actual history of science. Many of Bacon's most impressive and captivating passages contemplate the extension of the new methods of discovering truth to intellectual, to moral, to political, as well as to physical science. And how far, and how, the advantages of the inductive method may be secured for those important branches of speculation, it will at some future time be a highly interesting task to examine. But our plan requires us at present to omit the consideration of these; for our purpose is to learn what the genuine course of the formation of science is, by tracing it in those portions of human knowledge, which, by the confession of all, are most exact, most certain, most complete. Hence we must here deny ourselves the dignity and interest which float about all speculations in which the great moral and political concerns of men are involved. It cannot be doubted that the commanding position which Bacon occupies in men's estimation arises from his proclaiming a reform in philosophy of so comprehensive a nature;—a reform which was to infuse a new spirit into every part of knowledge. Physical Science has tranquilly and noiselessly adopted many of his suggestions; which were, indeed, her own natural impulses, not borrowed from him; and she is too deeply and satisfactorily absorbed in contemplating her results, to talk much about the methods of obtaining them which she has thus instinctively pursued. But the philosophy which deals with mind, with manners, with morals, with polity, is conscious still of much obscurity and perplexity; and would gladly borrow aid from a system in which aid is so confidently promised. The aphorisms and phrases of the Novum Organon are far more frequently quoted by metaphysical, ethical, and even theological writers, than they are by the authors of works on physics.

3. Again, even as regards physics, Bacon's fame rests upon something besides the novelty of the maxims which he promulgated. That a revolution in the method of scientific research was going on, all the greatest physical investigators of the sixteenth century were fully aware, as we have shown in the last chapter. But their writings conveyed this conviction to the public at large somewhat slowly. Men of letters, men of the world, men of rank, did not become familiar with the abstruse works in which these views were published; and above all, they did not, by such occasional glimpses as they took of the state of physical science, become aware of the magnitude and consequences of this change. But Bacon's lofty eloquence, wide learning, comprehensive views, bold pictures of the coming state of things, were fitted to make men turn a far more general and earnest gaze upon the passing change. When a man of his acquirements, of his talents, of his rank and position, of his gravity and caution, poured forth the strongest and loftiest expressions and images which his mind could supply, in order to depict the "Great Instauration" which he announced;—in order to contrast the weakness, the blindness, the ignorance, the wretchedness, under which men had laboured while they followed the long beaten track, with the light, the power, the privileges, which they were to find in the paths to which he pointed;—it was impossible that readers of all classes should not have their attention arrested, their minds stirred, their hopes warmed; and should not listen with wonder and with pleasure to the strains of prophetic eloquence in which so great a subject was presented. And when it was found that the prophecy was verified; when it appeared that an immense change in the methods of scientific research really had occurred;—that vast additions to man's knowledge and power had been acquired, in modes like those which had been spoken of;—that further advances might be constantly looked for;—and that a progress, seemingly boundless, was going on in the direction in which the seer had thus pointed;—it was natural that men should hail him as the leader of the revolution; that they should identify him with the event which he was the first to announce; that they should look upon him as the author of that which he had, as they perceived, so soon and so thoroughly comprehended.

4. For we must remark, that although (as we have seen) he was not the only, nor the earliest writer, who declared that the time was come for such a change, he not only proclaimed it more emphatically, but understood it, in its general character, much more exactly, than any of his contemporaries. Among the maxims, suggestions and anticipations which he threw out, there were many of which the wisdom and the novelty were alike striking to his immediate successors;—there are many which even now, from time to time, we find fresh reason to admire, for their acuteness and justice. Bacon stands far above the herd of loose and visionary speculators who, before and about his time, spoke of the establishment of new philosophies. If we must select some one philosopher as the Hero of the revolution in scientific method, beyond all doubt Francis Bacon must occupy the place of honour.

We shall, however, no longer dwell upon these general considerations, but shall proceed to notice some of the more peculiar and characteristic features of Bacon's philosophy; and especially those views, which, occurring for the first time in his writings, have been fully illustrated and confirmed by the subsequent progress of science, and have become a portion of the permanent philosophy of our times.

(II.) 5. A New Era announced.—The first great feature which strikes us in Bacon's philosophical views is that which we have already noticed;—his confident and emphatic announcement of a New Era in the progress of science, compared with which the advances of former times were poor and trifling. This was with Bacon no loose and shallow opinion, taken up on light grounds and involving only vague, general notions. He had satisfied himself of the justice of such a view by a laborious course of research and reflection. In 1605, at the age of forty-four, he published his Treatise of the Advancement of Learning, in which he takes a comprehensive and spirited survey of the condition of all branches of knowledge which had been cultivated up to that time. This work was composed with a view to that reform of the existing philosophy which Bacon always had before his eyes; and in the Latin edition of his works, forms the First Part of the Instauratio Magna. In the Second Part of the Instauratio, the Novum Organon, published in 1620, he more explicitly and confidently states his expectations on this subject. He points out how slightly and feebly the examination of nature had been pursued up to his time, and with what scanty fruit. He notes the indications of this in the very limited knowledge of the Greeks who had till then been the teachers of Europe, in the complaints of authors concerning the subtilty and obscurity of the secrets of nature, in the dissensions of sects, in the absence of useful inventions resulting from theory, in the fixed form which the sciences had retained for two thousand years. Nor, he adds[169 - Lib. 1. Aphor. 78 et seq.], is this wonderful; for how little of his thought and labour has man bestowed upon science! Out of twenty-five centuries scarce six have been favourable to the progress of knowledge. And even in those favoured times, natural philosophy received the smallest share of man's attention; while the portion so given was marred by controversy and dogmatism; and even those who have bestowed a little thought upon this philosophy, have never made it their main study, but have used it as a passage or drawbridge to serve other objects. And thus, he says, the great Mother of the Sciences is thrust down with indignity to the offices of a handmaid; is made to minister to the labours of medicine or mathematics, or to give the first preparatory tinge to the immature minds of youth. For these and similar considerations of the errors of past time, he draws hope for the future, employing the same argument which Demosthenes uses to the Athenians: "That which is worst in the events of the past, is the best as a ground of trust in the future. For if you had done all that became you, and still had been in this condition, your case might be desperate; but since your failure is the result of your own mistakes, there is good hope that, correcting the error of your course, you may reach a prosperity yet unknown to you."

(III.) 6. A change of existing Method.—All Bacon's hope of improvement indeed was placed in an entire change of the Method by which science was pursued; and the boldness, and at the same time (the then existing state of science being considered), the definiteness of his views of the change that was requisite, are truly remarkable.

That all knowledge must begin with observation, is one great principle of Bacon's philosophy; but I hardly think it necessary to notice the inculcation of this maxim as one of his main services to the cause of sound knowledge, since it had, as we have seen, been fully insisted upon by others before him, and was growing rapidly into general acceptance without his aid. But if he was not the first to tell men that they must collect their knowledge from observation, he had no rival in his peculiar office of teaching them how science must thus be gathered from experience.

It appears to me that by far the most extraordinary parts of Bacon's works are those in which, with extreme earnestness and clearness, he insists upon a graduated and successive induction, as opposed to a hasty transit from special facts to the highest generalizations. The nineteenth Axiom of the First Book of the Novum Organon contains a view of the nature of true science most exact and profound, and, so far as I am aware, at the time perfectly new. "There are two ways, and can only be two, of seeking and finding truth. The one, from sense and particulars, takes a flight to the most general axioms, and from those principles and their truth, settled once for all, invents and judges of intermediate axioms. The other method collects axioms from sense and particulars, ascending continuously and by degrees, so that in the end it arrives at the most general axioms; this latter way is the true one, but hitherto untried."

It is to be remarked, that in this passage Bacon employs the term axioms to express any propositions collected from facts by induction, and thus fitted to become the starting-point of deductive reasonings. How far propositions so obtained may approach to the character of axioms in the more rigorous sense of the term, we have already in some measure examined; but that question does not here immediately concern us. The truly remarkable circumstance is to find this recommendation of a continuous advance from observation, by limited steps, through successive gradations of generality, given at a time when speculative men in general had only just begun to perceive that they must begin their course from experience in some way or other. How exactly this description represents the general structure of the soundest and most comprehensive physical theories, all persons who have studied the progress of science up to modern times can bear testimony; but perhaps this structure of science cannot in any other way be made so apparent as by those Tables of successive generalizations in which we have exhibited the history and constitution of some of the principal physical sciences, in the Chapter of a preceding work which treats of the Logic of Induction. And the view which Bacon thus took of the true progress of science was not only new, but, so far as I am aware, has never been adequately illustrated up to the present day.

7. It is true, as I observed in the last chapter, that Galileo had been led to see the necessity, not only of proceeding from experience in the pursuit of knowledge, but of proceeding cautiously and gradually; and he had exemplified this rule more than once, when, having made one step in discovery, he held back his foot, for a time, from the next step, however tempting. But Galileo had not reached this wide and commanding view of the successive subordination of many steps, all leading up at last to some wide and simple general truth. In catching sight of this principle, and in ascribing to it its due importance, Bacon's sagacity, so far as I am aware, wrought unassisted and unrivalled.

8. Nor is there any wavering or vagueness in Bacon's assertion of this important truth. He repeats it over and over again; illustrates it by a great number of the most lively metaphors and emphatic expressions. Thus he speaks of the successive floors (tabulata) of induction; and speaks of each science as a pyramid[170 - Aug. Sc. Lib. iii. c. 4. p. 194. So in other places, as Nov. Org. i. Aph. 104. "De scientiis tum demum bene sperandum est quando per scalam veram et per gradus continuos, et non intermissos aut hiulcos a particularibus ascendetur ad axiomata minora, et deinde ad media, alia aliis superiora, et postremo demum ad generalissima."] which has observation and experience for its basis. No images can better exhibit the relation of general and particular truths, as our own Inductive Tables may serve to show.

(IV.) 9. Comparison of the New and Old Method. Again; not less remarkable is his contrasting this true Method of Science (while it was almost, as he says, yet untried) with the ancient and vicious Method, which began, indeed, with facts of observation, but rushed at once and with no gradations, to the most general principles. For this was the course which had been actually followed by all those speculative reformers who had talked so loudly of the necessity of beginning our philosophy from experience. All these men, if they attempted to frame physical doctrines at all, had caught up a few facts of observation, and had erected a universal theory upon the suggestions which these offered. This process of illicit generalization, or, as Bacon terms it, Anticipation of Nature (anticipatio naturæ), in opposition to the Interpretation of Nature, he depicts with singular acuteness, in its character and causes. "These two ways," he says[171 - Nov. Org. 1. Aph. 22.] "both begin from sense and particulars; but their discrepancy is immense. The one merely skims over experience and particulars in a cursory transit; the other deals with them in a due and orderly manner. The one, at its very outset, frames certain general abstract principles, but useless; the other gradually rises to those principles which have a real existence in nature."

"The former path," he adds[172 - Ib. Aph. 20.], "that of illicit and hasty generalization, is one which the intellect follows when abandoned to its own impulse; and this it does from the requisitions of logic. For the mind has a yearning which makes it dart forth to generalities, that it may have something to rest in; and after a little dallying with experience, becomes weary of it; and all these evils are augmented by logic, which requires these generalities to make a show with in its disputations."

"In a sober, patient, grave intellect," he further adds, "the mind, by its own impulse, (and more especially if it be not impelled by the sway of established opinions) attempts in some measure that other and true way, of gradual generalization; but this it does with small profit; for the intellect, except it be regulated and aided, is a faculty of unequal operation, and altogether unapt to master the obscurity of things."

The profound and searching wisdom of these remarks appears more and more, as we apply them to the various attempts which men have made to obtain knowledge; when they begin with the contemplation of a few facts, and pursue their speculations, as upon most subjects they have hitherto generally done; for almost all such attempts have led immediately to some process of illicit generalization, which introduces an interminable course of controversy. In the physical sciences, however, we have the further inestimable advantage of seeing the other side of the contrast exemplified: for many of them, as our inductive Tables show us, have gone on according to the most rigorous conditions of gradual and successive generalization; and in consequence of this circumstance in their constitution, possess, in each part of their structure, a solid truth, which is always ready to stand the severest tests of reasoning and experiment.

We see how justly and clearly Bacon judged concerning the mode in which facts are to be employed in the construction of science. This, indeed, has ever been deemed his great merit: insomuch that many persons appear to apprehend the main substance of his doctrine to reside in the maxim that facts of observation, and such facts alone, are the essential elements of all true science.

(V.) 10. Ideas are necessary.—Yet we have endeavoured to establish the doctrine that facts are but one of two ingredients of knowledge both equally necessary;—that Ideas are no less indispensable than facts themselves; and that except these be duly unfolded and applied, facts are collected in vain. Has Bacon then neglected this great portion of his subject? Has he been led by some partiality of view, or some peculiarity of circumstances, to leave this curious and essential element of science in its pristine obscurity? Was he unaware of its interest and importance?

We may reply that Bacon's philosophy, in its effect upon his readers in general, does not give due weight or due attention to the ideal element of our knowledge. He is considered as peculiarly and eminently the asserter of the value of experiment and observation. He is always understood to belong to the experiential, as opposed to the ideal school. He is held up in contrast to Plato and others who love to dwell upon that part of knowledge which has its origin in the intellect of man.
<< 1 2 3 4 5 6 7 >>
На страницу:
6 из 7

Другие электронные книги автора William Whewell