Оценить:
 Рейтинг: 3

Статистика и котики

Год написания книги
2017
Теги
<< 1 2 3 >>
На страницу:
2 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
Корень из дисперсии генеральной совокупности, как уже было сказано, называется среднеквадратическим отклонением. А вот корень из дисперсии по выборке называется стандартным отклонением.

Однако не будет большой ошибкой, если вы будете пользоваться терминами стандартное отклонение генеральной совокупности и стандартное отклонение выборки. Чаще всего именно последнее и рассчитывается для реальных исследований.

Глава 2. Картинки с котиками или Средства визуализации данных

В предыдущей главе мы говорили про показатели, которые помогают определить, какой размер является для котиков типичным и насколько он бывает разнообразным. Но когда нам требуется получить более полные и зрительно осязаемые представления о котиках, мы можем прибегнуть к так называемым средствам визуализации данных.

Первая группа средств показывает, сколько котиков обладает тем или иным размером. Для их использования необходимо предварительно построить так называемые таблицы частот. В этих таблицах есть два столбика: в первом указывается размер (или любое другое котиковое свойство), а во втором – количество котиков при данном размере.

Это количество, кстати, и называется частотой. Эти частоты бывают абсолютными (в котиках) и относительными (в процентах).

С таблицами частот можно делать много интересных вещей. Например, построить столбиковую диаграмму. Для этого мы откладываем две перпендикулярных линии: горизонтальная будет обозначать размер, а вертикальная – частоту. А затем – рисуем столбики, высота которых будет соответствовать количеству котиков того или иного размера.

А еще мы можем вместо столбиков нарисовать точки и соединить их линиями. Результат называется полигоном распределения. Он довольно удобен, если котиковых размеров действительно много.

Наконец, мы можем построить круговую диаграмму. Величина каждого сектора такой диаграммы будет соответствовать проценту котиков определенного размера.

Следующая группа средств визуализации позволяет отобразить сразу два котиковых свойства. Например, размер и мохнатость. Как и в случае со столбиковыми диаграммами, первым шагом рисуются оси. Только теперь каждая из осей отображает отдельное свойство. А после этого каждый котик занимает на этом графике свое место в зависимости от степени выраженности этих свойств. Так, большие и мохнатые котики занимают место ближе к правому верхнему углу, а маленькие и лысые – в левом нижнем.

Поскольку обычно котики на данной диаграмме обозначаются точками, то она называется точечной (или диаграммой рассеяния). Более продвинутый вариант – пузырьковая диаграмма – позволяет отобразить сразу три котиковых свойства одновременно (размер, мохнатость и вес). Это достигается за счет того, что сами точки на ней имеют разную величину, которая и обозначает третье свойство.

Последняя крупная группа средств визуализации позволяет графически изобразить меры центральной тенденции и меры изменчивости. В простейшем виде это точка на графике, обозначающая, где находится средний котик, и линии, длина которых указывает на величину стандартного отклонения.

Более известным средством является так называемый боксплот (или «ящик с усами»). Он позволяет компактно отобразить медиану, общий и межквартильный размах, а также прикинуть, насколько распределение ваших данных близко к нормальному и есть ли у вас выбросы.

Помимо вышеперечисленных средств существует еще немало специфических, заточенных под определенные цели (например диаграммы, использующие географические карты). Однако, вне зависимости от того, какой тип диаграмм вы хотели бы использовать, существует ряд рекомендаций, которые желательно соблюдать.

На диаграмме не должно быть ничего лишнего. Если на ней есть элемент, не несущий какой-либо смысловой нагрузки, его лучше убрать. Потому что чем больше лишних элементов, тем менее понятной будет диаграмма.

То же самое касается цветов: лучше ограничить их количество до трех. А если вы готовите графики для публикации, то лучше их вообще делать черно-белыми.

НЕМАЛОВАЖНО ЗНАТЬ!

Темная сторона визуализации

Несмотря на то, что средства визуализации помогают облегчить восприятие данных, они так же легко могут ввести в заблуждение, чем, к сожалению, часто пользуются разные хитрые люди. Ниже мы приведем самые распространенные способы обмана с помощью диаграмм и графиков.

Проценты вместо абсолютных величин. Очень часто, чтобы придать своим данным значимости, хитрые люди переводят абсолютное количество котиков в проценты. Согласитесь, что результаты, полученные на 50 % котиков, выглядят куда солиднее, чем на пяти.

Сдвиг шкалы. Чтобы продемонстрировать значимые различия там, где их нет, хитрые люди как бы «сдвигают» шкалы, начиная отсчет не с нуля, а с более удобного для них числа.

Сокрытие данных. Если же цель хитрого человека в том, чтобы скрыть значимые различия в данных, то их можно разместить на одной шкале с другими данными, которые на порядок отличаются от первых. На их фоне любые различия или изменения будут выглядеть незначительно.

Изменение масштабов. Более мягкий вариант создания иллюзии значимости – это изменение масштабов шкал. В зависимости от масштаба одни и те же данные будут выглядеть по-разному.

Таким образом, надо быть очень аккуратным, интерпретируя данные, представленные в виде графиков и диаграмм. Гораздо меньше подвержены манипуляции данные, представленные в табличной формуле. Однако и здесь можно использовать некоторые хитрости, которые могут ввести в заблуждение непосвященную публику.

Глава 3. Чем отличаются котики от песиков или Меры различий для несвязанных выборок

Есть котики, а есть песики. Песики чем-то похожи на котиков: у них четыре лапы, хвост и уши. Однако они также во многом различаются – например, котики мяукают, а песики лают.

Но не все различия между ними настолько очевидны. Например, довольно трудно судить о том, различаются ли песики и котики по размеру – ведь есть как очень большие котики, так и очень маленькие песики.

Чтобы понять, насколько они отличаются друг от друга, необходимы так называемые меры различий для несвязанных выборок. Большая часть таких мер показывает, насколько типичный песик отличается от типичного котика. Например, самая популярная из них – t-критерий Стьюдента для несвязанных выборок – оценивает, насколько различаются их средние размеры.

Чтобы рассчитать этот критерий, необходимо из среднего размера песиков вычесть средний размер котиков и поделить их на стандартную ошибку этой разности. Последняя вычисляется на основе стандартных отклонений котиковых и песиковых размеров и нужна для приведения t-критерия к нужной размерности.

Если разность средних достаточно большая, а стандартная ошибка очень маленькая, то значение t-критерия будет весьма внушительным. А чем больше t-критерий, тем с большей уверенностью мы можем утверждать, что в среднем песики отличаются от котиков.

К большому сожалению, поскольку формула t-критерия включает в себя средние значения, то этот критерий будет давать неадекватные результаты при наличии котиков и песиков аномальных размеров (т. е. выбросов, о которых подробно рассказано в первой главе). Чтобы этого избежать, вы можете либо исключить этих котиков и песиков из анализа, либо воспользоваться непараметрическим U-критерием Манна-Уитни. Этот критерий, кстати, используется и в тех ситуациях, когда точные (сантиметровые) размеры животных нам неизвестны.

Чтобы рассчитать критерий Манна-Уитни, необходимо выстроить всех песиков и котиков в один ряд, от самого мелкого к самому крупному, и назначить им ранги. Самому большому зверьку достанется первый ранг, а самому маленькому – последний.

После этого мы снова делим их на две группы и считаем суммы рангов отдельно для песиков и для котиков. Общая логика такова: чем сильнее будут различаться эти суммы, тем больше различаются песики и котики.

Наконец, мы проводим некоторые преобразования (которые в основном сводятся к поправкам на количество котиков и песиков) и получаем критерий Манна-Уитни, по которому судим, в действительности ли котики и песики отличаются по размеру.

Помимо определения различий между типичными представителями котикового и песикового видов, в некоторых случаях нас могут интересовать различия по их разнообразию. Иными словами, мы можем посмотреть, являются ли песики более разнообразными по размеру, чем котики, или же нет. Для этого мы можем воспользоваться F-критерием равенства дисперсий Фишера, который укажет нам, насколько различаются между собой эти показатели.

Необходимо заметить, что в этой формуле сверху всегда должна стоять большая дисперсия, а снизу – меньшая.

Все вышеперечисленные критерии замечательно работают в случаях, когда нам известны точные или хотя бы приблизительные размеры котиков и песиков. Однако такие ситуации встречаются далеко не всегда. Иногда мы можем иметь только указание на то, является ли наш зверь большим или маленьким. В таких нелегких условиях определить различия между котиками и песиками нам поможет критерий Хи-квадрат Пирсона.

Чтобы вычислить этот критерий, нужно построить так называемые таблицы сопряженности. В простейшем случае это таблицы 2?2, в каждой ячейке которых – количество (или, по-научному, частота) песиков и котиков определенного размера. Впрочем, бывают таблицы сопряженности и с большим количеством столбцов и строчек.

Очевидно, что если котики и песики как биологические виды не отличаются по размеру, то больших котиков должно быть столько же, сколько и больших песиков (в процентном соотношении). И основная идея критерия Хи-квадрат состоит в том, чтобы сравнить такую таблицу, в которой песики не отличаются от котиков (иначе – таблицу теоретических частот), с той, что есть у нас (таблицей эмпирических частот).

Перво-наперво необходимо получить таблицу теоретических частот. Для этого для каждой ячейки подсчитывается теоретическая частота по такой формуле.

Следующим шагом мы смотрим, насколько сильно различаются между собой соответствующие ячейки в наших таблицах. Делается это вот так.

Квадрат в числителе этой формулы убирает знак, а знаменатель приводит Хи-квадрат в нужную размерность. Заметим, что если теоретическая частота равна эмпирической, то, применив эту формулу, мы получим 0.

Последним шагом мы складываем все получившиеся значения. Это и будет Хи-квадрат Пирсона. Чем он больше, тем сильнее отличаются песики от котиков.

Помимо всего вышеперечисленного существуют и другие статистические критерии, которые позволяют нам определить, чем песики отличаются от котиков. Они, как правило, имеют разные механизмы вычисления и требования к данным. Но вне зависимости от того, каким критерием вы воспользовались, мало просто его вычислить. Необходимо еще и уметь его интерпретировать. И этому вопросу будет посвящена следующая глава.

НЕМАЛОВАЖНО ЗНАТЬ!

Загадочные степени

свободы

Многих изучающих статистику ставит в тупик понятие «степень свободы», которое часто встречается в учебниках.

Предположим вы знаете, что сумма размеров всех ваших котиков равна 75 см, но не знаете величину каждого конкретного котика. Эти величины будут неизвестны ровно до тех пор, пока вы не начнете их измерять.

Представим, что вы узнали размер первого котика и он оказался равен 20 см. После несложных вычислений можно убедиться, что сумма размеров оставшихся котиков будет 55 см. При этом их конкретные размеры до сих пор неизвестны.

<< 1 2 3 >>
На страницу:
2 из 3

Другие электронные книги автора Владимир Савельев

Другие аудиокниги автора Владимир Савельев