Рис. 8. Схема дыхательного аппарата FCU III.1 – трубка вдоха; 2 – клапанная коробка с загубником; 3 – трубка выдоха; 4 – мешок выдоха; 5 – травящий клапан; 6 – коробка поглотителя; 7 – контрольный манометр; в – баллоны; 9— клапан постоянной подачи; 10 – редуктор; 11 – невозвратный клапан: 12— шланг подачи газа: 13— мешок вдоха.
Избыток газовой смеси, который накапливается из-за ее непрерывной подачи в систему дыхания, вытравливается травящим клапаном в воду. Точно так же происходит вытравливание смеси при её расширении, что бывает при подъеме водолаза на меньшую глубину.
Устройство аппарата (рис. 9). Все части аппарата, за исключением клапанной коробки с дыхательными трубками и манометра, размещены в корпусе, который представляет собой жесткий пластмассовый (полистирол, усиленный фиброгласом) футляр.
Рис. 9. Автономный дыхательный аппарат FGG III: 1 – трубка вдоха: 2 – клапанная коробка с загубником; 3 – трубка выдоха; 4 – травящий клапан; 5 – мешок выдоха; б – коробка химпоглотителя; 7 и 12 – газовые баллоны: 8 и 10 – запорные вентили; 9 – клапанное устройство; 11 – манометр; 13 – плечевой ремень; 14 – мешок вдоха; I5 – крышка.
Дыхательный аппарат МК-6 фирмы «Дженерал электрик» (США) предназначен для спусков с поверхности на глубины до 75 м, при этом для прохождения декомпрессии к нему может присоединяться дополнительный кислородный баллон.
Схема дыхания в аппарате предусматривает постоянную подачу газовой смеси, состав которой устанавливается при зарядке в зависимости от глубины спуска, из баллонов через редуктор и дюзу, регулирующую количество газа, в систему дыхания (см. табл.). Последняя обычна для автономных аппаратов и включает два дыхательных мешка, коробку поглотителя и клапанную коробку с дыхательными трубками.
Избыток газовой смеси вытравливается в воду травящим клапаном, установленным на мешке выдоха. При недостатке газовой смеси, например, при увеличении глубины погружения, ее может добавлять водолаз, для чего в аппарате установлен ручной байпас, перепускающий газовую смесь в обход дозирующей дюзы.
Таблица.
Устройство аппарата (рис.10) отличается тем, что дыхательные мешки располагают на груди водолаза, а остальные части – на спине, смонтированными на раме. Основные части аппарата: газовые баллоны, блок дозировки, дыхательные мешки, коробка поглотителя и клапанная коробка с дыхательными трубками.
Газовые баллоны сделаны из алюминиевого сплава емкостью по 6 л с рабочим давлением 20,59 МПа (210 кгс/см
).
Рис. 10. Устройство аппарата МК-6
Рис. 10. Устройство аппарата МК-6.
1 – пряжки; 2 – мешок вдоха; 7 – клапанная коробка; 4 – загубник; 5 – трубка вдоха: 6 – соединительная трубка; 7 – запорный вентиль; 8 – тройник; 9 – редуктор; 10 – блок дозировки; 11 – трубка подачки газа; 12 – коробка поглотителя; 13 – газовые баллоны; 14 – панель; 15 и 17 – кольца: 16 – ремни; 18 – соединительная трубка выдоха; 19 – травящий клапан; 20 – трубка выдоха; 21- мешок выдоха; 22 – подкладка; 23- застежка типа «молния»; 24 – спускная пробка.
Баллоны соединены трубками с общим запорным вентилем, имеющим штуцер для присоединения зарядной трубки. Запорный вентиль соединен с редуктором, снижающим давление газовой смеси, поступающей из баллонов, до постоянной величины. Газовая смесь из редуктора поступает в блок дозировки.
Перед спуском редуктор регулируется так, чтобы давление подаваемой им газовой смеси соответствовало требуемой подаче через блок дозировки. Для подачи 8 л/мин газовой смеси постоянное давление должно быть 0,549 МПа (5,6 кгс/см
), подачи 12 л/мин – 0,961 МПа (9,8 кгс/см
) и подачи 21 л/мин – 1,236 МПа (12,6 кгс/см
).
Блок дозировки имеет три дюзы с сетчатым фильтром. В зависимости от потребности может подаваться 8, 12 или 21 л/мин газовой смеси в зависимости от ее давления в редукторе. Водолаз может подавать газовую смесь ручным пускателем.
Дыхательные мешки, сделанные из эластичной резины, имеют емкость около 4 л каждый. Мешки крепят к нагрудной подкладке шестью поворачивающимися застежками каждый. Каждый из мешков имеет по два присоединительных штуцера, с дыхательными трубками и трубками, соединяющими их с коробкой поглотителя. На мешке выдоха, кроме того, установлен травящий клапан, вытравливающий в воду излишки газовой смеси.
Коробка поглотителя имеет сверху два штуцера для присоединения дыхательных трубок, а снизу крышку, крепящуюся четырьмя барашками. Внутрь коробки вставляют патрон, содержащий около 2 кг поглотителя углекислого газа. Патрон поджимается пружиной к внутренней части штуцера выхода очищенной газовой смеси. Выдыхаемая водолазом газовая смесь попадает в зазор между корпусом коробки и патроном, затем, проходя через патрон снизу вверх, очищается от углекислого газа.
В России в 2006 г. также был создан дыхательный аппарат ДА-21 полузамкнутого/ замкнутого цикла (рис. 11).
Рис. 11. Внешний вид ДА-21 (без крышки).1 и 2 – газовые баллоны, 3 – коробка с химпоглотителем СО2;4 – дыхательный мешок.
Он содержит два баллона с 60% кислородно-азотной смесью (называемой на западе нитрокс), под давлением 300 кгс/см
и дыхательный мешок объёмом 8 л, что обеспечивает возможность плавания водолаза на глубине до 20 м в течение 4-х часов при полузамкнутом цикле дыхания, и кратковременные погружения на глубину до 40 м. Сопротивление дыханию в этом случае не превышает 50 мм вод. столба.
При переходе на замкнутый цикл дыхания в баллоны заряжают чистый кислород. Но сопротивление дыханию при этом возрастает до 100 мм вод. столба, время пребывания водолаза под водой увеличивается до 6 ч, а глубина погружения снижается до 8 -10 м.
Возможен переход на замкнутый цикл дыхания и при 60% кислородно-азотной смеси, но при этом парциальное давление кислорода в дыхательном мешке будет постепенно падать из—за того, что водолаз потребляет чистый кислород, а взамен из баллона подаётся смесь кислорода с азотом. Поэтому содержание азота в дыхательном мешке будет постепенно нарастать (ведь он не расходуется). Чтобы предупредить кислородное голодание (снижение парциального давления кислорода до 16 – 17%) и потерю водолазом сознания при всплытии, следует периодически производить трёхкратную промывку дыхательного аппарата (трижды выдыхать смесь в воду через клапанную коробку, включив её на атмосферу). При этом уменьшающийся объём смеси в дыхательном мешке будет пополняться из баллонов и содержание кислорода увеличится.
Автором книги была разработана и запатентована другая конструкция дыхательного аппарата замкнутого/ полузамкнутого цикла, которая не имеет указанных выше недостатков (рис. 12)..
Задача решается путём раздельного баллонного хранения компонентов дыхательной смеси – кислорода и азота (в отличие от существующих ИДА полузамкнутого типа), введения в конструкцию аппарата специального дозирующего клапана по азоту, и корректора кислорода.
Рис. 12. Принципиальная схема перспективного дыхательного аппарата замкнутого/ полузамкнутого цикла.
ИДА (фиг. 1) состоит из: баллона с кислородом 1; баллона с азотом 2; запорного вентиля кислорода 3; запорного вентиля азота 4; редуктора кислорода 5; редуктора азота 6; калиброванной дюзы для подачи кислорода 7; дозирующего клапана подачи азота 8; гибких дюритовых шлангов для подачи кислорода 9 и подачи азота 10 в дыхательный мешок водолаза; дыхательного мешка 11; коробки с веществом ХПИ 12; клапанной коробки 13 с клапаном вдоха, трубки вдоха 14 и трубки выдоха 15; полумаски 16; травящего клапана 17; дыхательного автомата 18, автоматического корректора кислорода 19, клапана выдоха 20.
Дозирующий клапан (фиг. 2) состоит из: корпуса 21, герметичной камеры постоянного давления 22, диафрагмы 23, пружины 24, иглы 25, сальника 26, дюзы 27, входного штуцера 28 и выходного штуцера 29.
Работает аппарат следующим образом.
На глубинах до 10 м в дыхательный мешок водолаза подаётся чистый кислород. В мешок он поступает из баллона 1 через вентиль 3, редуктор 5 и калиброванную дюзу 7. Дюза 7 ограничивает подачу кислорода исходя из его потребления водолазом при минимальной физической нагрузке (объём вентиляции лёгких 20 – 25 л/мин).
Далее, из мешка 11, через трубку вдоха 14 и клапанную коробку 13, кислород поступает в полумаску 16 и в лёгкие водолаза. Оттуда, через трубку выдоха 15 и клапан выдоха 20, часть кислорода и образовавшийся в лёгких углекислый газ поступают в коробку 12 с поглотителем двуокиси углерода – веществом ХПИ. После поглощения углекислоты оставшийся кислород снова поступает в дыхательный мешок водолаза, где пополняется новой порцией кислорода, поступающего из кислородного баллона 1. Трубопровод подачи азота в дыхательный мешок водолаза на глубинах до 10 м перекрыт дозирующим клапанном 8. Работает клапан следующим образом.
На глубинах до 10 м давление воды на диафрагму 23 не достаточно, чтобы преодолеть усилие пружины 24 и игла 25 запирает дюзу 27. При погружении водолаза на глубину свыше 10 м, наружное давление преодолевает сопротивление пружины 24, диафрагма 23 прогибается в сторону камеры постоянного давления 22, игла 25 приоткрывает дюзу 27 и азот из баллона 2, через вентиль 4 и редуктор 6, входной штуцер 28, дюзу 27 поступает в выходной штуцер 29 и далее в дыхательный мешок 11.
Подача азота в мешок дозируется в зависимости от глубины погружения. Чем больше глубина, тем больше открыт клапан. Заводская регулировка клапана должна обеспечивать поддержание в дыхательном мешке водолаза:
– 60% содержание кислорода на глубине 20 м;
– 40% содержание кислорода на глубине 40 м;
– 30% содержание кислорода на глубине 60 м;
с погрешностью +3%, при минимальной физической нагрузке (объём лёгочной вентиляции 20 – 25 л/мин.).
В результате исчезает опасность кислородного отравления водолаза.
При подъёме с 60 м на поверхность, клапан 8 сперва уменьшает подачу азота, а на глубине 10 м полностью закрывается. Водолаз переходит на дыхание чистым кислородом, что сокращает время декомпрессии.
Если погружение водолаза происходит достаточно быстро (со скоростью 0,3 м/с и более) то дыхательный мешок 11 не успевает наполняться кислородно-азотной смесью и обжимается. Это приводит к увеличению сопротивления дыханию. Поэтому в мешке установлен дыхательный автомат 18, подсоединённый к трубопроводу азота. Если разряжение в мешке превысило допустимый порог, автоматически открывается клапан подачи азота и мешок наполняется газом. Количество кислорода в нём падает, что делает безопасным дальнейшее погружение.
При всплытии дыхательный мешок водолаза раздувается, и травящий клапан 17 выпускает излишнюю газовую смесь. Постепенно она заменяется на новую, с повышенным содержанием кислорода.
В случае повышения физической нагрузки водолаза, объём его лёгочной вентиляции возрастает и может достигнуть 100 – 120 л/мин. Потребление кислорода также возрастает в несколько раз. Дюза 7 уже не сможет обеспечить заданный состав дыхательной смеси в дыхательном мешке и парциальное давление кислорода в нём начнёт падать. В конечном итоге это может привести к кислородному голоданию и потери сознания водолазом при всплытии с глубины на поверхность.
Чтобы избежать этого, в аппарате установлен автоматический корректор кислорода 19. Это дыхательный автомат аналогичный по конструкции дыхательному автомату акваланга с той лишь разницей, что установлен он в нише трубки выдоха, перед клапаном выдоха 20.
Известно, что с увеличением объёма вентиляции лёгких водолаза, возрастает и сопротивление дыханию. Согласно экспериментальным данным, в ИДА с дыхательным мешком оно может колебаться от 50мм водяного столба при минимальной лёгочной вентиляции, до 200 мм при максимальной лёгочной вентиляции, причём, повышается сопротивление, как при вдохе, так и при выдохе. Это обстоятельство и использовано для автоматической коррекции кислорода. Работает автоматический корректор следующим образом.
При выдохе в трубке 15 давление газа превышает давление воды. Величина этого превышения зависит от сопротивления пружины клапана выдоха 20, сопротивления химпоглотителя 12 и дыхательного мешка 11. При увеличении объёма лёгочной вентиляции повышается давление в трубке выдоха и частота его колебаний (водолаз дышит чаще). Это давление воздействует на мембрану дыхательного автомата 19 и, при превышении установленного порога, мембрана открывает клапан подачи кислорода в дыхательный контур (в коробку с ХПИ). Чем больше перепад давлений, тем дольше открыт клапан дыхательного автомата, тем больше кислорода он подаёт в дыхательную смесь. Заводская регулировка клапана должна обеспечить постоянство парциального давления кислорода в дыхательной смеси в требуемых пределах при колебании объёма лёгочной вентиляции от 20 до 120 л/мин.