Оценить:
 Рейтинг: 3.5

Инвестиции и трейдинг. Формирование индивидуального подхода к принятию инвестиционных решений

Год написания книги
2015
Теги
<< 1 2 3 4 5 >>
На страницу:
4 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

Таким образом, доходность акции должна состоять из безрисковой доходности (риск процентной ставки с нулевой бетой[34 - В качестве международной «безрисковой» (без кредитного риска) процентной ставки в мире де-факто принимают ставку долгосрочных казначейских обязательств США, хотя начиная с августа 2008 г. рынок кредитных деривативов оценивает ее в отличную от нуля. Применительно к конкретной стране «безрисковой» ставкой является ставка долгосрочных долговых обязательств правительства данной страны. Одно из объяснений того факта, что средняя доходность акций в течение последних 50 лет была значительно выше, чем облигаций, заключается в реакции на те или иные события, вызвавшие шок, а не на собственно фундаментальную информацию. Fama E., French K. The Equity Premium, The Journal of Finance, April 2002.]), доходности рынка над безрисковой доходностью и, наконец, доходности, соответствующей бете. Интересно, что из этой формулы следует, что у всех акций одинаковая ожидаемая доходность, соответствующая определенному уровню риска. Поэтому, как и предсказывает теория эффективного рынка, инвестор в среднем не сможет заработать больше, изменяя свой профиль риска.

Очевидно, что этот вывод игнорирует тот факт, что покупка акции тоже содержит элемент риска, который уникален для нее и не зависит от рынка. Однако теория Шарпа предполагает, что от специфического / несистемного / уникального / остаточного риска данной акции можно застраховаться путем диверсификации, т. е. подбора в портфель акций с разным уровнем стандартного отклонения цен. Более того, Шарп считает, что, поскольку такие риски могут быть снижены путем правильного подбора акций в портфель, инвесторы не будут требовать за них дополнительной компенсации[35 - На практике инвестиционные компании содержат огромные аналитические подразделения, основной работой которых остается фундаментальный анализ именно этого типа риска.].

Кроме того, из идей Шарпа следует, что доходность каждой акции также можно реплицировать комбинацией безрискового актива и другой акции. Поэтому сторонники CAPM предпочитают инвестировать в индексные фонды данных классов активов, а не в отдельные акции[36 - Sharpe W. F. Indexed Investing: A Prosaic Way to Beat the Average Investor. Презентация Monterey Institute of International Studies, May 1, 2002.].

CAPM предоставила математическое обоснование разным составляющим риска, и благодаря этому сегодня определяет мышление на рынках. Однако несмотря на методологическую ценность CAPM и получение практического подтверждения того, что активы с малой бетой меньше зарабатывают на подъеме рынка и меньше теряют на его падении, чем активы с большей бетой, в целом многие из ее практических аспектов вызывают вопросы.

К недостаткам CAPM можно отнести сложность ее тестирования. Она исходит из линейной взаимосвязи между системным риском и доходностью рыночного портфеля (индекс типа S&P 500), но большинство портфелей содержат не только акции, а потому предполагаемая взаимосвязь зачастую отсутствует. Более того, утверждение, что более высокий риск соответствует более высокой доходности, не подтверждается при тестировании, да и активы с нулевой бетой имеют доходность выше казначейских облигаций США, принимаемых за безрисковый актив[37 - Malkiel B. G. A Random Walk Down Wall Street, WW Norton & Company, 1973, p. 234.].

Поскольку бета является важным элементом современной финансовой теории, следует отметить несколько ее недостатков. Использование беты усложняется тем, что она часто изменяется в зависимости от периода (годовые и недельные беты одной акции не совпадают) и плохо функционирует для краткосрочных инвестиций[38 - Пабло Фернандес в исследовании Are Calculated Betas Worth for Anything? (IESE Business School, Working paper) изучил беты 3813 компаний за 60 месяцев, по январь 2002 г. В среднем максимальная бета каждой акции в 15,7 раза превосходила ее минимальную величину. Максимальная бета в каждой отрасли также оказалась в среднем в 2,7 раза выше ее минимальной величины. Дамодаран также показал, что беты данной акции, подсчитанные за разные периоды (месячные или годовые), значительно различаются.]. Кроме того, в странах, в которых капитализация рынков состоит из небольшого количества крупных акций, бета излишне коррелирует с их поведением. Так, в Финляндии акция Nokia составляет 75 % капитализации рынка, а потому бета других компаний не отражает их риск. На бету также оказывают сильное влияние модификация стратегии компаний, их слияния, поглощения и разделение; изменения в составе индекса рынка и т. д. Таким образом, историческая бета данной компании – понятие весьма условное.

В результате теоретические и эмпирические проблемы CAPM (и в той же мере теории эффективного рынка) были сведены к нескольким необъяснимым феноменам, среди которых наиболее известными являются: «загадочная премии за риск», «эффект малых фирм», «эффект выходных» и «январский эффект»[39 - Список необъясненных феноменов можно дополнить рядом других наблюдений. Например, доходность рынков акций 36 стран, включая развивающиеся рынки, между ноябрем и апрелем выше, чем в период с мая по октябрь. На английском рынке этот эффект существует с 1694 г. Вторым примером является рост акций в момент включения их в рыночный индекс (в США этот показатель составляет примерно 3,5 %).]. Первая проблема сводится к тому, что, как показывает тестирование, доходность акций оказывается выше риска[40 - Мехра и Прескотт сформулировали этот вопрос следующим образом: «Почему в условиях маловолатильного роста потребления население не вкладывает в высокодоходные активы, притом что ковариация потребления и поведения рынка акций незначительна?» Бенартци и Талер из школы поведенческих финансов предполагают, что это явление можно объяснить с точки зрения феномена «близорукого отрицания риска» (myopic aversion): инвесторы предпочитают устойчивый доход и требуют премию за дополнительный риск. К другим объяснениям относится то, что они: а) считают это необъясняемой аномалией; б) компенсацией за риск; в) переоценивают фирмы, показывающие хорошие результаты, и недооценивают компании с плохими показателями; г) инвесторы предпочитают растущие компании недооцененным.].

Вторая проблема заключается в том, что модель не объясняет, почему доходность акций малокапитализированных компаний значительно превышает этот показатель для компаний с большой капитализацией[41 - Olsen R.A. Are Risk Premium Anomalies Caused by Ambiguity? Financial Analysts Journal, March/April 2000, Vol. 56, No. 2.]. Этот момент имеет большое практическое значение для российских компаний, размещающих акции на западных рынках. По международным стандартам большинство российских компаний подпадает под категории небольших и растущих. Следовательно, финансовые блоки компаний должны с особым вниманием подходить к выбору моделей, используемых для их оценки, иначе они окажутся недооцененными, как предполагают основные модели, построенные на базе CAPM.

В третью проблему можно объединить целую группу наблюдений, которые не может объяснить САРМ. Например, «эффект выходных» приводит к тому, что доходность в выходные дни является предсказуемо негативной. «Январский эффект» выражается в предсказуемо высокой доходности рынка акций в конце декабря – начале января.

В целом оказывается, что предположения о нормальном распределении доходов[42 - Shalit H. and Yitzhaki Sh. Estimating Beta, Review of Quantitative Finance and Accounting, vol. 18, No. 2 (March 2002).] и о стремлении доходности к среднему значению не подтверждаются[43 - Квартальная, полугодовая и годовая средняя доходность демонстрирует моментум, а не стремление к средней. Heston St.L., Sadka R. The Periodic Term Structure of Stock Momentum. Working Paper, July 5, 2002.]. Все эти четыре проблемы указывают на невозможность описания средней доходности, что статистически объясняется проблемой плохих моделей (bad-model problem). Так, если настроить CАPM на решение «эффекта малых фирм», она перестает описывать доходность компаний с высокой капитализацией. Аналогично модели, описывающие доходность для длительного временно?го периода, не могут описать ее на коротких отрезках времени, и наоборот[44 - Fama E.F. Market Efficiency, Long-Term Returns, and Behavioral Finance, Working Paper, June 1997.].

Значительное число недостатков модели делает невыгодным ее практическое применение, что признается даже сторонниками теории эффективного рынка[45 - Fama E.F., French K.R. The Capital Asset Pricing Model: Theory and Evidence, CRSP Working Paper, No. 550, August 2003.]. В качестве альтернативы CAPM Е. Фама и К. Френч в 1993 г. предложили трехфакторную модель. В соответствии с ней портфель подбирают исходя из размера компании (капитализация), соотношения бухгалтерской и рыночной стоимости (book-to-market) и поведения рынка акций[46 - Известный инвестор Баффетт (Warren Baffett) считает, что, если цена бизнеса падает в два раза, он становится более интересным. Такой подход противоречит теории эффективных рынков, согласно которой падение цены отражает информацию, что с бизнесом не все в порядке.Кроме того, оказывается, что недооцененные акции менее волатильны, чем рынок в целом, а это противоречит идее, что более рисковые активы должны быть более волатильными. Меньшая волатильность, в свою очередь, может объясняться тем, что инвесторы, вкладывающие в недооцененные компании, редко меняют позиции, а это искусственно снижает волатильность.]. Однако, как и CAPM, эта модель не смогла описать среднюю доходность, поэтому использовать ее для прогнозирования доходности по «рыночному» портфелю не представляется возможным, даже притом, что она лучше, чем CAPM, описывает поведение цен малокапитализированных компаний. Кроме того, если портфель акций сформирован по принципу величины капитализации, соотношения бухгалтерской и рыночной стоимости, а также соотношения доходности и цены, то он больше соответствует долгосрочной фактической доходности как в США, так и на рынках акций двенадцати других стран[47 - Fama E.F., French K.R. Value Versus Growth: The International Evidence. Working Paper, Social Science Research Network Electronic Library.].

В 1997 г. Даниель и Титман предложили характеристическую модель (characteristics model), где доходность определяется в соответствии с категорией компании – растущей или недооцененной (growth; distress). Они пришли к выводу, что излишняя уверенность инвесторов может привести к инерционным тенденциям, особенно в отношении акций, по которым требуется интерпретация неясной информации. Это особенно характерно для акций растущих компаний[48 - Daniel К., Titman Sh. Market Efficiency In an Irrational World. Financial Analysis Journal, November/December 1999, Vol. 55, No. 6.].

Они рассматривают высокий уровень соотношения бухгалтерской и рыночной стоимости как свидетельство плохого экономического состояния компании, а низкий – хорошего. Это предположение подменяет собой необходимость делать допущение о рискованности компании, в чем состоит принципиальное отличие от подхода CAPM, где делается допущение о риске и игнорируется соотношение бухгалтерской и рыночной стоимости. Тестирование этой модели, проведенное в период 1973–1993 гг., подтвердило ее преимущество над CAPM, но последняя показала лучшие результаты за 1929–1997 гг.[49 - Davis J.L., Fama E.F., French K.R. Characteristics, Covariances, and Average Returns: 1929–1997, The Center for Research in Security Prices, Working Paper, No. 471, February 1999.] Такая непоследовательность в качестве результатов исчезает при включении транзакционных издержек. В этом случае сравнение моделей Даниеля – Титмана и Фамы – Френча приводит к аналогичным результатам[50 - Pastor L., Stambaugh R.F. Comparing Asset Pricing Models: An Investment Perspective. Working Paper, July 1999.].

Следует отметить, что хотя и МРТ и САРМ появились до создания теории эффективного рынка, в целом все три теории исходят из похожих допусков и не противоречат друг другу. Однако Маркович и Шарп исходят из того, что на рынке есть комбинации активов в портфеле, которые позволят инвестору найти доходность, соответствующую его аппетиту на риск. Идеи Фамы и Самуэльсона относятся больше к отдельным активам, и на успех в угадывании динамики конкретных активов авторы этих теорий смотрят скептически, как бы также рекомендуя портфельный подход.

Итак, рассмотренные модели установили некие «принципы», которые удобны для объяснения сложных явлений на рынках акций в определенные периоды. Внедрение их в практику заняло очень долгие годы, но и по сей день следование им опасно и ненадежно. Однако других моделей на сегодняшний момент просто не существует, и это вынуждает нас помнить об их выводах в нашей практической деятельности.

Теории, объясняющие поведение валют

Рассмотрим модели, используемые для прогнозирования поведения цен различных активов. Начнем с валют. Наиболее простыми являются теории процентного паритета (IRP – interest rate parity) и покупательного паритета (PPP – purchasing power parity). Первая гласит, что при данных процентных ставках двух валют будущий курс предсказуем на уровне форвардной цены.

Продемонстрируем это положение на следующем примере. Одолжим сегодня на год доллары, платя за них 10 %, обменяем их по сегодняшнему курсу на иену и разместим иены на годовой депозит под 0 %. На таком обмене, если валютный курс останется неизменным, через год вы потеряете 10 % процентного дохода. Если же за год курс доллара к иене вырастет, вы рискуете потерять на изменении валютного курса больше, чем заработаете на разнице в процентных ставках, полученных от депозитной операции. Можно ли обезопасить процентный доход путем хеджирования валютного риска с помощью какого-то финансового инструмента? На практике это невозможно, поскольку на рынке есть финансовый инструмент – форвард, который рассчитывается исходя из разницы в процентных ставках двух валют и корректирует ее (разницу) валютным курсом. В нашем примере форвардный курс доллар/иена с поставкой через год будет на 10 % ниже (т. е. иена на форварде будет на 10 % дороже по отношению к доллару, чем на споте). Таким образом, даже потеряв 10 % на депозите, вы можете в конце срока откупить доллар, продав иену по курсу, который на 10 % превышает сегодняшний. Следовательно, суммарный результат депозитных и валютных операций будет равен нулю.

Японский инвестор, который решил без риска заработать прибыль, купив за иену доллары и разместив их на годовой депозит по более высокой ставке, чем в иене, также не смог бы получить прибыль после хеджирования депозитной операции форвардом. IRP – завуалированный вариант теории эффективного рынка (или «случайного блуждания»). Одним из ее основных следствий является то, что лучшим предсказателем будущей цены является сегодняшняя цена. Применительно к валютным курсам IRP как раз и утверждает, что лучшим предсказателем будущей цены является сегодняшняя цена, скорректированная на разницу процентных ставок. При этом в IRP и процентные ставки де-факто рассматриваются как неизменные, т. е. сегодняшние ставки тоже считаются лучшими предсказателями ставок в будущем. На наш взгляд, утверждение, что лучшим предсказанием будущей цены является сегодняшняя цена, есть признание в беспомощности, а не практически полезный вывод.

Теория паритета покупательной способности (РРР – purchasing power parity) предсказывает, что в условиях свободной торговли товары будут двигаться в страну с более высоким уровнем цен. Ее валюту, полученную в обмен на товары, будут продавать, пока уровень цен, скорректированный на валютный курс, не достигнет паритета, чтобы было невыгодно в страну экспортировать. Поскольку уровни цен меняются из-за инфляции, можно сказать, что чем больше уровень инфляции, тем ниже курс валюты данной страны. Эта теория действительно находит свое отражение в жизни, но, как правило, в долговременной перспективе – в течение 16 кварталов[51 - Levich R. M. Can Currency Movements Be Forecasted? AIMR Conference Proceedings: Currency Risk in Investment Portfolios, June 1999, p. 35.]. Рис. 1.4, а – в показывает, что получается, если взять курс валютной пары и умножить ее на соотношение показателей инфляции в соответствующих странах. Как видно в случае котировок доллара в долгосрочной перспективе, РРР выдерживается. Сделав это утверждение, следует оговориться: предположим, за неделю рынок упал на 7 %. Значит ли это, что через четыре года он откорректируется до курса недельной давности, или до сегодняшнего курса, или до некоторого среднего курса? Иными словами, даже если исходить из того, что теория может быть полезна через такой долгий период, непонятно, как ее использовать для инвестирования в текущей момент.

На практике ни IRP, ни РРР, ни их вариации при тестировании для кратко- и среднесрочной перспективы не подтверждаются. Предвосхищая обсуждение темы ликвидности, рассмотрим вышеизложенные теории на примере двух типичных практических случаев, когда потоки ликвидности перенаправили вектор движения курсов валют, предсказанный моделями.

В конце 1980-х гг. курс канадского доллара против американского постоянно рос, несмотря на более высокий уровень инфляции, бюджетный дефицит и попытки Квебека отделиться от Канады. Объяснялась эта тенденция несколькими факторами. Канадские провинции и корпорации одалживали средства на американском рынке, где ставки были ниже, и обменивали полученные американские доллары на канадские. В ходе этой нехитрой операции они продавали американские доллары, покупая канадские. Параллельно, накануне передачи Гонконга Китаю, китайцы переезжали в Канаду и переводили туда свои капиталы, которые до того времени хранили в американских долларах, а в процессе также покупали канадские доллары.

В результате курс, который на основании РРР должен был быть примерно 1,4000, упал до 1,1200. Такая тенденция продолжалась почти 10 лет. Очевидно, что при общей логичности теоретической концепции РРР она оказалась малопригодной для краткосрочного прогнозирования курсов.

Второй пример: резкий рост котировок американского доллара против евро в 2000–2001 гг. был в первую очередь результатом увеличения инвестиций из Европы в США. Они росли не вследствие фундаментальных причин, связанных с соотношением стоимости валют, а поскольку американский фондовый рынок рос и сулил инвесторам прибыли большие, чем в Европе. Но в 2001–2002 гг. тенденция резко изменилась, поскольку стали иными ожидания роста цен акций. Обратим внимание, что при этом не изменились инфляция и ее прогнозы, а экономика США продолжала расти быстрее европейской. Иными словами, основным фактором был поток ликвидности: портфельные инвестиции («горячие деньги») могут в течение нескольких лет противодействовать ожиданиям сторонников фундаментального анализа.

В заключение следует отметить, что исследователи пришли к выводу: РРР достаточно эффективно описывает поведение курсов в момент гиперинфляции, но не в спокойные времена. Модели нового поколения, основанные на нелинейных взаимосвязях номинальных валютных курсов и экономических показателях, лучше справляются с задачей прогнозирования курсов на двух-трехлетние сроки, но вряд ли и они полезны, так как инвесторы на валютном рынке не заинтересованы в прогнозах со срочностью свыше шести месяцев[52 - Kilian L., Taylor M. P. Why is it So Difficult to Beat The Random Walk Forecast of Exchange Rates? European Central bank, Working Paper, No. 88, November 2001.].

3. Проблемы моделирования

Проблемы, связанные с информацией

Важность критического подбора информации для построения модели

Конечная цель изучения информации – достижение ряда целей, основной из которых является выявление ключевых факторов, необходимых для построения модели. Изначально же требуется найти информацию, необходимую для разработки и тестирования моделей.

Финансовую информацию можно разделить на четыре категории:

– немедленно известную. Теория эффективного рынка исходит из того, что эта категория является доминирующей (universally-informed trading);

– менее известную, но быстро отражаемую в ценах посредством действий профессиональных трейдеров (professionally-informed trading);

– инсайдерскую, которую рынок предполагает почерпнуть на основе наблюдений за действиями трейдеров, обладающих доступом к закрытым источникам (derivatively-informed trading);

– неизвестную, но прогнозируемую (uninformed trading).

Следует критически оценить все четыре типа информации в соответствии с этой классификацией, но мы остановимся на первом. Важным каналом обмена немедленно доступной информацией являются информационные агентства и средства массовой информации в целом[53 - Gilson R. J., Kraakman R. The Mechanism of Market Efficiency Twenty Years Later: The Hindsight Bias, Columbia Law and Economics, Working Paper, No. 240, October 2003.]. Естественно, что СМИ имеют разные стандарты достоверности. Так, некоторые из них публикуют материалы, основанные на слухах и домыслах, а другие предпочитают использовать только проверенную информацию. Кроме того, репортеры придают своим отчетам собственную эмоциональную и политическую окраску, искажая факты аналогиями и метафорами. Так, во время кризиса 1998 г. в репортажах CNN, посвященных дефолту российских банков, постоянно фигурировали кадры с изображением филиалов Альфа-Банка. Хотя последний исполнял свои обязательства перед вкладчиками и повода для подобного освещения событий не давал, но, как потом оказалось, у CNN не нашлось под рукой видеозаписи с изображением других банков. На рынке распространилось мнение, что Альфа-Банк несостоятелен, и невинная на первый взгляд ошибка телеканала чуть не привела к его банкротству. Таким образом, на любом уровне доступа к информации нет гарантии ее качества.

Чтобы извлечь уроки из прошлого, необходимо не только очистить исторические данные от технических ошибок и трактовок, но и осмыслить, какие реальные события стоят за теми или иными цифрами. Именно понимание сути явлений, произошедших в прошлом, обеспечивает гибкость и достоверность будущей модели.

Однако найти полное и точное описание событий, как правило, невозможно, особенно в случаях рыночной аномалии; память рынка очень коротка и точностью не отличается. Фактически ее можно назвать эмоциональными воспоминаниями, а не представить в виде поэтапных аналитических расслоений тех или иных событий на составные части. Например, в начале 1990-х гг., когда в очередной раз ожидался кризис американской финансовой системы, управляющий фондом одного из крупнейших инвестиционных банков в Нью-Йорке попытался воссоздать события, сопутствовавшие падению рынка акций в октябре 1987 г. К его удивлению, в банке не оказалось ни зафиксированной информации, ни людей, способных вспомнить и прокомментировать произошедшее. Иными словами, найти историю движения цен и объемов торгов не представляло сложности, но восстановить сопутствующую информацию (слухи, сообщения) было практически невозможно.

Частично это явление можно объяснить значительной текучестью персонала, которая является следствием каждого кризиса. Кроме того, редко существует «единственно верная» трактовка того, что явилось его отправной точкой. Например, нет описания российского дефолта 1998 г., которое рынок мог бы признать точным.

Таким образом, на первом же этапе построения моделей возникает сложность нахождения информации для построения и тестирования гипотез, закладываемых в их основу, а затем калибрования моделей для использования в прогнозировании. Анализ ряда ключевых исследований, приведенный ниже, показывает, насколько меняются выводы в зависимости от исходной информации. Поэтому статистики и говорят, что, «если мучить цифры достаточно долго, можно получить любой желаемый результат».

Реакция рынка на неожиданную информацию

Неожиданные события имеют большое значение для оценки эффективности теории финансовой экономики. Продемонстрируем принятие решения в момент появления новой информации. В середине 1994 г. президент России отдал приказ вооруженным силам о захвате Думы – этим закончилось противостояние спикера Государственной думы Р. Хаcбулатова президентской власти. На рынках валют резко вырос курс доллара. Сообщения информационных агентств с новостями из Москвы поступали непрерывно.

Спустя несколько минут после очередного сообщения дилер одного из российских банков получил несколько звонков от зарубежных коллег с вопросом о том, кто такой Хаcбулатов и какова его роль в происходящих событиях. Сигнал к каким действиям дали эти звонки дилеру?

Доллар в то время играл функцию «безопасной гавани», и когда в тех или иных регионах мира возникала напряженная ситуация, повышался его курс по отношению ко многим другим валютам. Политическая нестабильность в России также вызывала рост доллара. В таких ситуациях очень важно найти ответ на следующий ключевой вопрос: вся ли информация уже отражена в текущей рыночной цене, т. е. купили ли доллар все те, кто нервничал из-за нестабильности ситуации. Звонки из-за границы показали, что многие пытаются разобраться в происходящем и вряд ли информация уже полностью «в цене». Таким образом, дилеру следовало покупать доллар.

Историю реакций рынка на кризисные события демонстрирует таблица 1.1.

Примечания

– Уровни изменения для 22, 63, 126 и 253 дней рассчитаны от последнего дня в колонке, где указаны даты реакции на событие. Первая дата указывает начало рыночной реакции или торговый день, предшествующий событию.

– Рыночные дни.

– В 1916 г. список из 20 акций DJIA был пересмотрен и пересчитан к открытию курса 12 декабря 1914 г.

Источник: индекс Доу-Джонса, 1885–1990 гг.

Из таблицы можно сделать много интересных выводов. Особенно любопытно поведение рынка в дни, предшествующие оккупации Франции Германией в 1940 г. Оказывается, столь стремительная корректировка цен произошла ввиду того, что все европейские рынки следовали повышательной тенденции в месяцы, предшествующие событию. Представьте себе ситуацию в Европе в то время: полная милитаризация, нацисты только что оккупировали несколько стран, английские войска перебрасываются во Францию, а рынок растет. Не правда ли, этот факт подрывает веру в рациональность инвесторов и в их способность правильно трактовать информацию?
<< 1 2 3 4 5 >>
На страницу:
4 из 5