Faugeres J.-C., Stow D.A.V., Imbert P., Viana A.R., Wynn R.B. 1999. Seismic features diagnostic of contourite drifts. Marine Geology. Vol. 162, pp. 1–38.
Gaina C., Muller R.D., Brown B., Ishihara T. and Ivanov S. 2007. Breakup and early seafloor spreading between India and Antarctica. Antarctica. Geophys. J. Int. Vol. 170, pp. 151–169.
Gradstein F.M., Agterberg F.P., Ogg J.G., Hardenbol J., van Veen P.,Thierry J., Huang, Z., 1994. A Mesozoic timescale, Journ. Geop. Res.Vol. 99, pp. 24051–24074.
Kuvaas B., Leitchenkov G. 1992. Glaciomarine turbidite and current controlled deposits in Prydz Bay. Antarctica. Marine Geology. Vol. 108, pp. 365–381.
Leitchenkov G.L. 1991. Structure and evolution of the Prydz Bay. In: Abstracts of Sixth International Symposium on Antarctic Earth Sciences. National Inst. Polar Res., Japan, pp. 346–351.
Leitchenkov G., Stagg H., Gandjukhin V., Cooper A.K., Tanahashi M., O’Brien P. 1994. Cenozoic seismic stratigraphy of Prydz Bay (Antractica). In Cooper A.K., Barker P.F., Webb P.N., Brankolini G. (Eds), The Antarctic continental margin: geophysical and geological stratigraphic records of Cenozoic glaciation, Paleoenvironments and sea-level change, Terra Antarctica. Vol. 1, N 2, pp. 395–397.
Leitchenkov G.L., Gandyukhin V.V., Guseva Y.B. 2007. Crustal structure and evolution of the Mawson Sea, western Wilkes Land margin, East Antarctica. In: Cooper A. K., Raymond C. R. et al. Antarctica: A Keystone in a Changing World – Proceedings of the 10th ISAES, USGS Open-File Report 2007–1047, Short Research Paper 028. 2007. doi:10.3133/of2007-1047.srp 028.
Leitchenkov G., Guseva J., Gandyukhin V., Grikurov G., Kristoffersen Y., Sand M., Golynsky A., Aleshkova N. 2008. Crustal structure and tectonic provinces of the Riiser-Larsen Sea area (East Antarctica): results of geophysical studies. Mar. Geoph. Res. Vol. 29, pp. 135–158.
Muller R. D., Roest W. R., Royer J-Y., Gahagan L. M., Sclater J. G. 1997 Digital isochrons of the World’s ocean floor. Journ. Geoph, Res. Vol. 102 (B2), pp. 3211–3214.
Muller R.D., Gaina C., Roest W.R., Lundbek D. 2001. A recipe for microcontinent formation. Geology. Vol. 29. № 3, pp. 203–206.
Montigny R., Karpoff A.-M., Hofmann C. 1993. Resultats d’un dragage par 55°18’S-83°04’E dans le Bassin de Labuan (campagne MD 67, ocean Indien meridional): implications geodynamiques, Geosciences Marines, Soc., geol. France, 83.
Operto S., Charvis P. 1996. Deep structure of the southern Kerguelen Plateau (southern Indian Ocean) from ocean bottom seismometer wide-angle seismic data, Journ. Geoph. Res. Vol. 101, pp. 25077–25103.
Powell C.A., Roots S.R., Veevers J.J. 1988. Pre-breakup continental extension in East Gondwanaland and early opening of the eastern Indian Ocean. Tectonophysics. № 155, pp. 261–283.
Ramana M.V., Ramprasad T., Desa M. 2001. Seafloor spreading magnetic anomalies in the Enderby Basin, East Antarctica. Earth and Plan. Sci. Lett. Vol. 191, pp. 241–255.
Rotstein Y., Schlich R., Munschy M., Coffin M. 1992. Structure and tectonic history of the Southern Kerguelen Plateau (Indian Ocean) deduced from seismic reflection data. Tectonics. Vol. 11, № 6, pp. 1332–1347.
Royer J.-Y., Coffin M.F. 1992. Jurassic to Eocene plate tectonic reconstructions in the Kerguelen Plateau region. In: Wise J.S.W., Julson A.P., Schlich R., Thomas E. (Eds.). Proceedings of the Ocean Drilling Program, scientific results, 120, Texas A&M University, College Station, TX, pp. 917–930.
Sandwell D., Smith W.H.F. 2005. Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. Geoph. J. Int. Vol. 163, pp. 79–89.
Sibuet J-C., Srivastava S., Manatschal G. 2007. Exhumed mantle-forming transitional crust in the Newfoundland-Iberia rift and associated magnetic anomalies. Journ. Geoph. Res. Vol. 112, B06105, DOI:10.1029/2005JB003856.
Song T., Cawood P.A., Middleton M. 2001. Transfer zones normal and oblique to rift trend: example from the Perth Basin, Western Australia. In: Wilson R.C.L., Whitmarsh R.B., Taylor B., Froitzheim N. (Eds.). Non-Volcanic rifting of continental margins: a composition of evidence from land and sea. Geological Society. London. Special Publication. № 187, pp. 475–488.
Stagg H.M.J. 1985. The structure and origin of Prydz Bay and Mac.Robertson shelf. East Antarctica. Tectonophysics. Vol. 114, pp. 315–340.
Stagg H.M.J., Colwell J.B., Direen N.G., O’Brien P.E., Bernardel G., Borissova I., Brown B.J., Ishirara T. 2005. Geology of the continental margin of Enderby and Mac Robertson Lands, East Antarctica: insights from a regional data set. Marine Geoph. Res. Vol. 25, pp. 183–219.
Storey M., Kent R.W., Saunders A.D., Salters V.J., Hergt J., Whitechurch H., Sevigny J.H., Thirlwall M.F., Leat P., Ghose N.C. and Gifford M. 1992. Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau. In Wise, S.W., Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Station, TX (Ocean Drilling Program), pp. 33–53.
Tikku A.A., Cande S.C. 1999. The oldest magnetic anomalies in the Australian-Antarctic Basin: are they isochrons? Journ. Geoph. Res. Vol. 104, pp. 661–677.
Truswell E.M., Dettmann M.E., O’Brien P.E., 1999. Mesozoic palynofloras from the Mac.Robertson Shelf, East Antarctica: geological and phytogeographic implications. Antarct. Sci. Vol. 11, pp. 239–255
Wilson R.C.L., Whitmarsh R.B., Taylor B., Froitzheim N. (Eds.). 2001. Non Volcanic rifting of continental margins: a composition of evidence from land and sea. Geological Society. London. Special Publication. № 187, 585 p.
Ziegler P.A., Cloetingh S. 2004. Dynamic processes controlling evolution of rifted basins. Earth-Science Reviews. Vol 1, pp. 1–50.
Leitchenkov G.L.[9 - Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia), St. Petersburg, Russia], Guseva Yu.B.[10 - Polar Marine Geosurvey Expedition (PMGE), St. Petersburg, Lomonosov, Russia], Gandyukhin V.V.[11 - Polar Marine Geosurvey Expedition (PMGE), St. Petersburg, Lomonosov, Russia], Gohl K.[12 - Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany], Ivanov S.V.[13 - Polar Marine Geosurvey Expedition (PMGE), St. Petersburg, Lomonosov, Russia], Golynsky A.V.[14 - Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia), St. Petersburg, Russia], Kazankov A.Ju.[15 - Polar Marine Geosurvey Expedition (PMGE), St. Petersburg, Lomonosov, Russia] Crustal tectonics and depositional history in the Southern Indian Ocean (East Antarctica: Cooperation Sea, Davis Sea, Kerguelen Plateau)
Abstract
This paper outlines major results of marine geophysical surveys conducted in the framework of the IPY 20072008 Project in the area of southern Kerguelen Plateau during 2007 and 2009 austral seasons (in 2007, geophysical data were acquired jointly with Alfred Wegener Institute, Germany). Conducted studies enabled us to define crustal structure and characteristics of this region, to map principal tectonic provinces and features, to develop a seismic stratigraphy model, and to define depositional settings and environmental changes during Late Mesozoic – Cenozoic time.
С.В. Попов[16 - Полярная морская геологоразведочная экспедиция (ПМГРЭ), г. Санкт-Петербург, г. Ломоносов, Россия], Г.Л. Лейченков[17 - Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана имени академика И.С. Грамберга (ВНИИОкеангеология), г. Санкт-Петербург, Россия], В.Н. Масолов[18 - Полярная морская геологоразведочная экспедиция (ПМГРЭ), г. Санкт-Петербург, г. Ломоносов, Россия], В.М. Котляков[19 - Институт географии Российской Академии Наук (ИГ РАН), г. Москва, Россия], М.Ю. Москалевский[20 - Институт географии Российской Академии Наук (ИГ РАН), г. Москва, Россия]
Мощность ледникового покрова и подлёдный рельеф Восточной Антарктиды (результаты исследований по проекту МПГ)
Аннотация
В статье представлены результаты исследований по проекту МПГ 2007–2008 ABRIS (исследование коренного рельефа и мощности ледникового щита Антарктиды), в рамках которого создана база данных мощности льда Восточной Антарктиды и составлены карты подлёдного рельефа и мощности ледникового покрова. Основным источником информации для построения карт являлись материалы отечественных радиолокационных исследований, выполненных с 1966 по 2008 гг., и зарубежных экспедиций, полученных из международной базы данных переданных организациями исполнителями работ.
Введение
В октябре 1996 г. в г. Кембридже (Великобритания) по инициативе рабочей группы по геофизике Научного комитета по исследованиям в Антарктике (SCAR) состоялось рабочее совещание, посвящённое оценке состояния изученности ледникового покрова и коренного рельефа Антарктиды и созданию нового международного проекта «Топография коренного ложа Антарктики» (BEDMAP). В ходе совещания были определены цели и задачи нового проекта, а также методические подходы для успешной его реализации (BEDMAP, 1996). Работу по сбору материала, созданию объединенной базы данных и составлению карт возглавили специалисты Британской антарктической службы (BAS).
В ходе выполнения проекта BEDMAP была сформирована база данных, содержащая 1 931 437 пунктов измерений мощности ледникового покрова по 127 объектам геофизических работ, выполненных в Антарктиде в период с 1950-х до середины 1990-х годов (BEDMAP, 1999). Основную их часть (99.64 %) составляют материалы радиолокационного профилирования (РЛП). После обработки всех полученных данных были сформированы гриды мощности ледникового покрова и коренного рельефа и на их основе создана и опубликована карта коренного рельефа Антарктики масштаба 1: 10 000 000 (Lythe et al., 2000). Важным достижением проекта BEDMAP является создание единой базы данных по мощности льда (включает в себя дискретные значения по радиолокационным профилям и одиночным сейсмическим зондированиям, выполненным до 1995 г.), формирование на её основе математических моделей (гридов) мощности ледникового покрова и коренного рельефа и составление соответствующих мелкомасштабных карт, которые послужили основой для решения многих научных задач в области геологии, гляциологии, моделирования изменений климата и др. Необходимо, однако, отметить, что результирующие карты отражают лишь самые общие (региональные) черты строения ледниковой толщи и подледной поверхности, так как все полученные материалы были осреднены путём создания равномерного (независимо от масштаба выполненных съёмок) цифрового грида.
В рамках инициативы третьего Международного полярного года (МПГ 2007–2008) специалистами ПМГРЭ, ВНИИОкеангеология и ИГРАН был предложен проект ABRIS (Antarctic Bedrock Relief and Ice Sheet – Коренной рельеф и ледовый щит Антарктиды), основная цель которого состояла в создании собственной базы данных мощности ледникового покрова и подлёдной топографии Антарктиды и составлении обобщающих и региональных карт с детальностью, максимально соответствующей масштабам съёмок. Главным объектом исследований по проекту ABRIS является Восточная Антарктида в секторе между 20°в.д. и 160°в.д. (рис. 1). Для успешной реализации проекта и подготовки качественной картографической продукции сначала выполнялась обработка, взаимная увязка и обобщение разномасштабных отечественных данных, значительная часть которых была получена в аналоговой форме и потребовала оцифровки. Кроме того, для составления карт были использованы материалы зарубежных исследований, открытые для международного сообщества. Проект ABRIS был зарегистрирован в международном офисе МПГ, одобрен национальным комитетом МПГ и внесён в перечень предложений в научную программу участия Российской Федерации в проведении международного полярного года.
Рис. 1 Схема радиолокационных и сейсмических исследований, использованных для составления карт мощности ледникового покрова и подлёдного рельефа Восточной Антарктиды. 1–3: данные отечественных исследований. 1 – пункты сейсмических зондирований МОВ; 2 – площади аэрогеофизических съёмок масштаба 1: 500 000; 3 – аэрорадиолокационные и наземные маршруты; 4–5: данные зарубежных исследований, полученные из база данных проекта BEDMAP. – пункты сейсмических зондирований МОВ; 5 – аэрорадиолокационные маршруты. 6–7 – данные зарубежных исследований, преданные в проект ABRIS организациям исполнителями. 6 – аэрорадиолокационные маршруты; 7 – площади аэрогеофизических съёмок масштаба 1: 700 000; 8 – береговая линия (линия налегания шельфовых ледников) по данным цифровой базы данных по Антарктике (Antarctic Digital database, 1998) и данным ПМГРЭ для озера Восток (Попов и др., 2007б); 9 – горные выходы по данным цифровой базы данных по Антарктике (Antarctic Digital database, 1998); 10 – изогипсы высот дневной поверхности; сечение изолиний 200 м. Географические объекты: 1 – шельфовый ледник Эймери; 2 – Купол Аргус; 3 – Купол Конкордия; 4 – Купол Фуджи; 5 – Земля Королевы Мод; 6 – Земля Эндерби; 7 – горы Принс-Чарльз; 8 – ледораздел B; 9 – шельфовый ледник Росса; 10 – Трансантарктические горы; 11 – Купол Титан; 12 – подледниковое озеро Восток; 13 – Земля Уилкса.
1. Радиолокационные и сейсмические исследования
Исследования мощности ледникового покрова Антарктиды проводятся в трех модификациях: точечные сейсмические зондирования методом отражённых волн (МОВ), наземное радиолокационное профилирование и аэрорадиолокационные съемки. Отечественные исследования МОВ стали проводиться с 1958 г. в научных санно-гусеничных походах (Капица, 1960, рис. 1). В период с 1971 по 1975 гг. были выполнены площадные работы МОВ на Земле Эндерби и в районе шельфового ледника Эймери, а с 1995 по 2008 гг. в пределах подледникового озера Восток (Попов и Поздеев, 2002; Попов и др., 2007, рис. 1). Первая аэрорадиолокационная съемка проведена в 14-ой Советской антарктической экспедиции (САЭ) в 1967 г. с использованием самолета Ил-14 и ледового локатора частотой 213 МГц (Козлов и Федоров, 1968). Регулярные аэрогеофизические исследования, в составе которых были и радиолокационные наблюдения, начались в 1985 г. и продолжаются до настоящего времени. В 1987–91 гг. (33–36 САЭ) в центральной части Восточной Антарктиды были выполнены комплексные аэрогеофизические исследования с борта самолёта Ил-18Д, которые закрыли значительную площадь от побережья Земли Эндерби до гор Гамбурцева (рис. 1). Для производств радиолокационных наблюдений применялись ледовые локаторы МПИб0 и ЛЛ5000 с частотой зондирующих импульсов 60 МГц (Попов и др., 2006). Плановая привязка обеспечивалась доплеровским оборудованием, радиогеодезической системой дальней навигации и спутниковой системой плановой привязки. Точность привязки составляла от 150 м до 100 м. В 1971–74 гг., 1986 и 1988 гг. (17–19, 31, 33 САЭ) аэрорадиолокационные съемки с локатором МПИ-60 выполнялись в восточной части Земли Королевы Мод и на Земле Эндерби. В качестве носителя использовались самолёты Ил-14 (Куринин и Алешкова, 1987). С 1985 г. начались планомерные аэрогеофизические исследования масштаба 1: 500 000 в районе ледников Ламберт-Эймери (Попов и Поздеев, 2001; Попов и др., 2006).
В период 1998–2009 гг. в районе подледникового озера Восток и на трассах следования санно-гусеничных походов между станциями Мирный-Восток и Прогресс-Восток выполнялось наземное радиолокационное профилирование (рис. 1). В работах использовался ледовый локатор РЛС-60-98 с частотой зондирующих импульсов 60 МГц. Плановая привязка осуществлялась с помощью глобальной системы позиционирования (GPS; Попов и др., 2007).
При составлении карт были использованы также материалы зарубежных экспедиций, полученные из базы данных проекта BEDMAP (рис. 1). К ним относятся: (1) данные наземных сейсмических исследований США, выполненные в 1960-х; плановая привязка пунктов наблюдения осуществлялась астрономическим способом (Crary, 1962; Beitzel, 1971); (2) материалы совместных аэрогеофизических исследований США, Великобритании и Дании, выполненных в течение летних полевых сезонов 1971/72, 1974/75 и 1978 гг. на Земле Виктории и в центральной части Восточной Антарктиды; работы выполнялись на базе самолёта C-130 с использованием ледового локатора частотой 60 МГц; точность плановой привязки составила около 3 км (Drewry & Meldrum, 1978); (3) материалы японских наземных радиолокационных исследований, выполненных в районе купола Фуджи 1992–94 гг.; применялся ледовый локатор с частотой зондирующих импульсов 60 МГц; плановая привязка обеспечивалась (BEDMAP, 1999). В 2001 и 2004 гг. экспедициями США (Studinger et al., 2003) и Германии (McLean et al. 2004) были проведены комплексные аэрогеофизические съёмки с использованием радиолокационного профилирования в районе подледникового озера Восток и к югу от гор Принс-Чарльз. Материалы этих исследований переданы в проект ABRIS и использованы при построении карт.
2. Результаты исследований по проекту ABRIS
По результатам исследований в рамках проекта МПГ ABRIS составлены карты мощности ледникового покрова и подлёдного рельефа, которые формировались посредством гридирования всего объёма данных методом Inverse Distance с размером ячеек грида 5х5 км и радиусом осреднения 80 км. Методика гридирования обоснована и достаточно подробно изложена в работе (Попов и др., 2007). Подлёдный рельеф строился путем вычитания мощности ледника из дневной поверхности. На начальном этапе работ по проекту ABRIS использовалась модель дневной поверхности, сформированная в рамках проекта GTOPO30, доступная по адресу в интернете http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html). В его основу были положены материалы спутниковых съемок ERS-1 (Gesch & Larson, 1996). При всех достоинствах модели она недостаточно точно описывает поле высот дневной поверхности шельфовых ледников и присклоновой части антарктического ледника, поэтому для расчёта модели коренного рельефа, сформированной в рамках проекта ABRIS, использовалась дневная поверхность проекта RAMP2 (Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2), сформированная, главным образом, на основе материалов спутника ERS-1 и ERS-2. Данные доступны по адресу в интернет http://nsidc.org/data/docs/daac/nsidc0082_ramp_dem_v2.gd.html (http://nsidc.org/data/docs/daac/nsidc0082_ramp_dem_v2.gd.html) (Liu. et al., 2001)
Мощность ледникового покрова изученной части Восточной Антарктиды изменяется от первых до более чем 4000 метров. Наименьшие значения приурочены к горным выходам и районам подлёдных гор; наибольшие соответствуют отрицательным формам рельефа: впадинам и желобам. В генеральном плане мощность ледника контролируется подлёдным ландшафтом и нарастает от периферии к центру (рис. 2). Здесь выявлено пять горных областей. Самой западной из них являются горы Вернадского (рис. 3), которые протягиваются от побережья вглубь материка боле чем на 1000 км. На территории проведённых исследований для неё характерны высоты от 1000 до 1400 м, при относительных высотах 500–700 м. Для этой горной системы характерны преимущественно субмеридианальные простирания слагающих её форм рельефа.
Рис. 2 Мощность ледникового покрова Восточной Антарктиды (сечение изолиний 200 м)
К востоку от гор Вернадского, на Земле Эндерби, располагаются горы Серлапова, имеющие меридианальное простирание (рис. 3). Размеры этой горной области составляют около 1000–400 км. От гор Вернадского они отделяются обширной депрессией шириной около 100 км. В целом морфометрические параметры обоих горных систем сходны как по абсолютным, так и по относительным высотам. Восточные отроги гор Серлапова, непосредственно примыкающие к западному борту рифтовой долины Ламберта, сопрягаются с горами Принс-Чарльз, значительная часть которых обнажается на дневной поверхности (рис. 3).
Рис. 3. Подлёдный рельеф Восточной Антарктиды (сечение изолиний 200 м). Географические объекты: 1 – шельфовый ледник Эймери; 2 – подлёдный бассейн Аврора; 3 – желоб Адвенчер; 4 – возвышенность Бельжика; 5 – подлёдные горы Гамбурцева; 6 – подлёдные горы Комсомольские; 7 – горы Принс-Чарльз; 8 – горы Полюса недоступности; 9 – подлёдный бассейн Полярный; 10 – подлёдный желоб Пикок; 11 – шельфовый ледник Росса; 12 – возвышенность Резольюшан; 13 – равнина Шмидта; 14 – подлёдные горы Серлапова; 15 – Трансантарктические горы; 16 – котловина Винсенс; 17 – Восточная равнина; 18 – подледниковое озеро Восток; 19 – подлёдные горы Вернадского; 20 – котловина Уилкса.
В центральной части Восточной Антарктиды располагаются две отдельные горные системы: горы Гамбурцева и горы Полюса Недоступности (рис. 3). Их границы выходят за рамки построений. Горы Гамбурцева имеют значительные размеры, охватывающие площадь более чем 700 000 км
и имеют относительные высоты более 3 км. Привершинная часть гор Гамбурцева располагается на абсолютных высотах около 2000 м. С востока к ним примыкают горы Комсомольские, протяжённость которых с севера на юг, по всей видимости, составляет около 1000 км, при ширине около 300 км. Их отроги выходят к западному берегу подледникового озера Восток. Для гор Комсомольских характерны высотные отметки до 1200 м.