Оценить:
 Рейтинг: 4.5

Микрополяризации у детей с нарушением психического развития или Как поднять планку ограниченных возможностей

Год написания книги
2011
Теги
<< 1 2 3 4 5 6 7 ... 13 >>
На страницу:
3 из 13
Настройки чтения
Размер шрифта
Высота строк
Поля
в головном мозге возникают грубые расстройства кровообращения, а вот при плотностях до 0,1 мА на см

отмечается активация защитно-компенсаторных механизмов (Ясногородский, 1987). В настоящее время границы допустимых диапазонов плотности тока установлены в пределах 0,01—0,1 мА на см

.

Надо отметить, что физические воздействия низкой интенсивности характерны для отечественной физиотерапевтической школы именно в силу их способности стимулировать защитные силы организма и процессы самовосстановления, оказывать регуляторное влияние на различные системы организма, вызывая своего рода гомеопатический эффект. При этом, в отличие от высокоинтенсивных, низкоинтенсивные воздействия редко вызывают общие и местные патологические реакции, а главное – имеют специфический характер (Ясногородский, 1987; 1998; Улащик, 1994; Пономаренко, 1995; 2000; 2002;).

1.2. Метод транскраниальной микрополяризации (ТКМП)

Разработка метода ТКМП с помощью поверхностных электродов малой площади была осуществлена в конце 70-х годов XX века в Физиологическом отделе им. И. П. Павлова НИИЭМ СССР (Вартанян, 1966; 1970; 1981). Доказано, что при использовании ТКМП электрографические показатели (ЭЭГ, ВП) и морфологические изменения (плотность синапсов, ультраструктурные изменения и др.) регистрируются не только в подэлектродном пространстве (причем достаточно локально), но и в таких глубоких структурах, как гиппокамп, ядра таламуса и т. п. При этом для различных кортикальных зон характерна определенная избирательность нисходящих влияний на подкорковые регуляторные системы, активность которых меняется в зависимости от выраженности функциональных сдвигов в корковой зоне. Так, поляризация отдельных областей височной коры приводит к возрастанию специфических для ТКМП пат тернов ЭЭГ в латеральных ядрах амигдалярного комплекса, задних и срединных отделах таламуса. При поляризации других зон той же височной коры наблюдается снижение амплитуды электрограммы в задних отделах таламуса и мезэнцефалической ретикулярной формации. Микрополяризация переднемедиальных отделов лобной коры вовлекает в системный эффект хвостатое ядро и теменную кору. Показано было также влияние транскутанной микрополяризации на состояние проводниковых аппаратов не только головного, но и спинного мозга (Lang et al., 2004).

Таким образом, наиболее вероятным механизмом действия слабого постоянного тока при неинвазивном использовании являются именно поляризационные эффекты.

В их основе лежит градуальное изменение уровня возбудимости невролеммы и синаптического аппарата, что делает их более чувствительными для восприятия восходящих афферентных потоков.

Под действием направленной микрополяризации на различные корковые структуры происходит избирательное вовлечение в системный эффект дистантно расположенных структурных образований, выраженность которого определяется наличием кортикофугальных и транссинаптических связей.

ТКМП и tDCS

Достаточно давно установлено повышение спонтанной спайковой активности в кортикальной области под анодом и ее снижение под катодом, причем в глубоких слоях коры (Creutzfelgt et al., 1962; Bindman et al., 1962; Purpura, McMurty, 1965). Влияние постоянного тока на импульсную активность нейронов традиционно связывают со сдвигом потенциала покоя корковых нейронов (Purpura, McMurty, 1965). В то же время, если постоянный ток прилагается относительно долго (5 мин), изменения частоты импульсной активности могут длиться несколько часов (Bindman et al., 1962). Относительно недавно (Nitsche, Paulus, 2001) ТКМП были вновь привнесены в экспериментальную, а позже и в клиническую практику под названием tDCS (transcranial direct current stimulation).

При tDCS меняется возбудимость кортикоспинальных (пирамидных) нейронов, причем при анодной поляризации (когда анод находится на проекции первичной моторной коры (М1), а катод – в области правого лобного полюса). Использовался общепринятый в настоящее время метод тестирования возбудимости первичной моторной коры путем ее магнитной стимуляции одиночными импульсами и регистрации моторных вызванных потенциалов (от мышцы, проекция которой в М1 стимулировалась). В соответствии с данными, полученными на животных, изменения возбудимости сохраняются и после окончания tDCS, если воздействие продолжалось более 3 мин (Nitsche, Paulus, 2000) и остается достаточно стабильным на 1 ч, если tDCS проводилась? 10 мин (Nitsche, Paulus, 2001; Nitsche et al., 2003). Пролонгированный эффект tDCs в отношении кортикоспинальной возбудимости может быть модулирован посредством фармакопрепаратов, влияющих на возбудимость нейрональных мембран, и блокируется антагонистом NMDA-рецепторов декстрометорфаном (Liebetans et al., 2002). Антагонист NMDA-рецепторов не влиял на немедленный эффект tDCS, но блокировал долговременные эффекты tDCS не зависимо от их направленности (Nitsche et al., 2003). tDCS потенцировала эффект повышения возбудимости под влиянием высокочастотной ТМС (Lang et al., 2004), логически сопоставимый эффект tDCS был показан и в отношении низкочастотной (1 Гц) тормозной магнитной стимуляции.

Достаточно косвенно описанные феномены могут интерпретироваться как указания на длительную потенциацию (long-term potentiation, LTP) и так называемую длительную депрессию (long-term depression, LTD).

tDCS, системные и нейрохимические эффекты

Показано, что tDCS изменяет функционирование мозговых систем. tDCS первичной моторной коры облегчает опосредованное обучение (Nitsche et al., 2003), а воздействие на затылочную кору облегчает зрительно-моторное обучение (Antal et al., 2004). Анодная поляризация левой дорсолатеральной префронтальной коры в плацебо контролируемом эксперименте улучшала, а катодная несколько ухудшала показатели ассоциативного вербального теста при силе тока 2 мА (в отличие от плацебо и 1 мА) (Iyer et al., 2005) или улучшала рабочую память на последовательность букв (Fregni et al., 2005). Билатеральная анодная поляризация в течение 30 мин области проекций F

F

в отличие от плацебо воздействия улучшала декларативную память на пары слов, будучи примененной во время медленноволнового сна, но не при воздействии во время бодрствования (Marshall et al., 2005).

D-Cycloserine, частичный агонист N-methyl-d-aspartate (NMDA), улучшает когнитивные функции у людей. Как было показано (Nitsche et al., 2004), это вещество удлиняет время повышения возбудимости моторной коры (по данным регистрации моторных вызванных потенциалов) в ответ на tDCS моторной коры предположительно за счет воздействия на NMDA-рецепторы.

В обзоре Schlaug et al. (2008) представлены данные о возможности потенцирования пластичности мозга и частичного восстановления функций после перенесенного инсульта при проведении tDCS на область инсульта. Анодная tDCS моторной коры у больных с последствиями инсульта увеличивает силу щипка и укорачивает время простой сенсомоторной реакции (Hummel et al., 2006).

Анодная поляризация первичной моторной коры улучшала показатели JebsonTaylor Hand Funсtion Test, который отражает активность рук в повседневной жизни в отличие от псевдовоздействия (Hummel, 2005). При этом выявлялись увеличение наклона кривых вовлечения (показатель возбудимости моторной коры) и снижение внутрикоркового торможения на коротких интервалах времени (тестировались с помощью ТМС). Анодная tDCS контралатеральной руке моторной коры (в отличие от контрольной группы) улучшала длительный эффект (5 дней) обучения по кривой «скорость– точность» выполнения моторного теста, не влияя на скорость забывания этого навыка в течение 3 мес. после воздействия (Reis et al., 2009).

Обзор публикаций по моторному обучению и формированию моторной памяти под влиянием tDCS представлен Reis et al. (2008). Публикации по антидепрессивному эффекту tDCS, ТМС и их сочетания с фармакотерапией представлены в обзоре Brunoni et al. (2009). Литература по аналгетическому эффекту ТМС и tDCS дается Rosen et al. (2009).

Катодная поляризация первичной моторной коры не только снижала возбудимость коры по показателям моторных потенциалов на ТМС и электрическую стимуляцию, что было многократно показано, но, что важнее, сопровождалась увеличением мощности дельта– и тета-ритмов в скальповой ЭЭГ (Ardolino, et al., 2005). Этот феномен достаточно хорошо согласуется с результатами экспериментов на животных (Вартанян и др., 1981) и ЭЭГ-исследований у больных с неврологическими по своему генезу болевыми синдромами при проведении транскраниальной электроаналгезии с большим вкладом постоянной составляющей тока (Lomarev, 1989; Ломарев, 1989).

Нейровизуализация эффектов tDCS

Изменения уровня активации мозговых образований при tDCS были выявлены с помощью нейровизуализации. Длительное снижение количества активированных пикселей в дополнительной моторной коре при выполнении теста последовательного противопоставления пальцев наблюдалось при пятиминутной анодной поляризации первичной моторной коры по данным функциональной МРТ (Baudevig et al., 2001). фМРТ выявляет относительно кратковременные фазические сдвиги в уровне активации. По зитронноэмиссионная томография (ПЭТ), обладая меньшей пространственной и временной разрешающей способностью, демонстрирует тонические сдвиги активности. По данным Н

О ПЭТ, анодная поляризация первичной моторной коры вызывала широко распространенное увеличение мозгового кровотока в корковых и подкорковых структурах, не связанное с выполнением моторного теста (Lang et al., 2005). Только в первичной моторной коре наблюдалось увеличение мозгового кровотока, связанное с выполнением моторного теста (нажатие на кнопку в произвольно выбираемом ритме).

Клинические эффекты ТКМП

В первых клинических исследованиях ТКМП применяли у больных шизофренией с синдромом вербального псевдогаллюциноза (Вартанян и др., 1981). Было показано, что левосторонняя поляризация передне– и задневисочных отделов вызывала отчетливое смягчение вербального псевдогаллюциноза, сохраняющееся в течение 2–3 дней. После проведения ТКМП лобных отделов галлюцинаторные явления исчезали практически полностью. Также было отмечено, что при левосторонней височной поляризации вербальная память ухудшалась, а при правосторонней – несколько улучшалась. Возможность применения локальной ТКМП для лечения депрессий обсуждалась в предшествующих работах (Липпольд, 1971). Поиск в этом направлении продолжается (Nitsche, 2002).

В последнее время показано влияние ТКМП лобной коры на изменение мышечного тонуса (Ломарев, 1996; Иришина и др., 2001; Nitsche et al., 2000) и функции памяти (Boggio et al., 2006) у больных паркинсонизмом, улучшение функции равновесия при поляризации вестибулярного аппарата (Krizkova, Hlavacka, 1994), изменение психофизиологических характеристик восприятия при ТКМП лобной и зрительной проекций головного мозга (Корсаков, 1986), улучшение функций внимания и поведения у детей и подростков с синдромом гиперактивности при ТКМП лобной коры субдоминантного полушария (Кропотов и др., 2001; 2002), ускорение психомоторного развития у детей с перинатальным поражением ЦНС и судорожными состояниями (Пинчук, 1997; 2007; Шелякин и др., 2000; Илюхина, 2001).

Был также предпринят ряд успешных попыток лечения с помощью ТКМП отдельных соматических синдромов, в частности, ревматоидного происхождения (Fregni et al., 2006), гинекологических заболеваний (Кустаров и др., 2001), а также болевых синдромов (Fregni et al., 2006). Большой клинический интерес представляют работы, посвященные эффектам ТКМП моторных зон, особенно при реабилитации пациентов с соответствующими поражениями (Nitsche et al., 2005; Шелякин, Пономаренко, 2006), а также применению катодной поляризации в расчете на ее тормозной эффект (Nitsche et al., 2003).

Таким образом на сегодняшний день возможность применения ТКМП в качестве лечебного воздействия при функциональных и органических нарушениях деятельности мозга достаточно обоснована как теоретически, так и экспериментально.

Особого внимания заслуживает тот факт, что эффекты микрополяризации имеют в принципе системный характер, превращая поляризуемую структуру в своего рода активный фокус, который вовлекает в сочетанную деятельность дистантные структуры. Иначе говоря, формируется доминанта, в данном случае – поляризационная, и именно как «констелляция нервных центров» по А. А. Ухтомскому, которая приводит к качественной перестройке общего функционального состояния мозга и обеспечивает в итоге клинический эффект (Русинова, 1992; 1993).

1.2.1. ТКМП при очаговых поражениях головного мозга

Очаговые поражения головного мозга травматической и сосудистой природы характеризуются рядом общих признаков: нарушением локального и системного мозгового кровообращения, локальным и диффузным отеком головного мозга, наличием гематомы либо центра некроза, а также переходной (перифокальной) зоны. Нейроны в этой зоне находятся в состоянии парабиоза, и их гибель со временем может обусловить существенное расширение зоны некроза. Расширение первоначальных границ очага может также происходить вследствие вторично возникающих нарушений церебрального кровообращения и гипоксии, что значительно усиливает некротические процессы (Сировский и др., 1991; Зотов и др., 1996). В очаге деструкции и окружающей его сохранной ткани выявлено отсутствие активности окислительных ферментов, что является причиной последующей морфологической гибели мозговой ткани, окружающей очаг деструкции (Мохова, 1978). Кроме того, доказано наличие аутоиммунных реакций в разрушенных тканях мозга (Ганнушкина, 1974). Развитие гипоксических, нейродистрофических и аутоиммунных изменений способствует нарастанию локального и общего отека мозга.

Обратимый характер могут носить отдельные органические изменения прежде всего в перифокальной зоне, что обусловило первые попытки применить ТКМП при острых очаговых поражениях головного мозга. Было показано, что под влиянием ТКМП разрешение перифокального отека не только ускоряется в несколько раз, но и происходит по совершенно иному механизму – путем прямой тканевой резорбции, без образования гиподенсной «дорожки», ведущей в ликворные пространства (Шелякин, Пономаренко, 2006) (табл. 1).

Повышение нейрональной активности в перифокальной зоне, вызывая, в свою очередь, цепочку закономерных физиологических реакций, приводит в конечном счете к восстановлению важнейших морфологических и функциональных характеристик головного мозга, что сопровождается убедительным клиническим эффектом. Ускорение регресса общемозговой и очаговой неврологической симптоматики подтвердилось соответствующей нейровизуализационной и ЭЭГ-динамикой (Тюлькин и др., 2001, 2008; Горелик, 2008, 2009; Бухарцев и др., 2008; Горелик и др., 2008, 2009, 2010).

Таблица 1

Динамика результатов нейровизуализационного обследования больных основной и контрольной групп

В частности, было показано, что у больных с острыми очаговыми поражениями головного мозга травматического и сосудистого генеза при дополнительной терапии с помощью ТКМП регресс общемозговой симптоматики ускоряется почти в 3 раза, в 1,3–1,9 раза снижается необходимость хирургического вмешательства, существенно сокращается срок пребывания в стационаре. Необходимо отметить, что у данной группы больных значительно снижается угроза отдаленных последствий и осложнений.

А

Б

Рис. 1. Больной 47 лет с черепно-мозговой травмой (очаги ушиба второго рода, стрелки) исходно (А) и через 14 суток (Б) на фоне ежедневных процедур ТКМП

Углубленное нейрофизиологическое исследование, направленное на изучение пространственного распределения ЭЭГ, показало, что ТКМП облегчает работу базовых механизмов обеспечения компенсаторно-восстановительной деятельности, важную роль в организации которой играют главные ассоциативные корковые зоны (Горелик, 2008, Горелик и др., 2008, 2009).

1.2.2. ТКМП в коррекционном процессе при нарушениях психического развития у детей

В процессе обучения детей регулярно возникают ситуации, когда традиционные методы логотерапии, психологические методы развивающего обучения (Семенович, 2007; Ахутина, Пылаева, 2008) не приносят ожидаемых результатов в ожидаемые сроки. Это приводит к постепенному увеличению расхождений между возрастной нормой ВПФ и актуальным уровнем их развития у отстающего ребенка. Данная проблема заставляет медиков, нейрофизиологов, психологов и педагогов искать пути интенсификации коррекционного процесса. И если возможности психологов и педагогов на этапе обучения качественно выше, то на этапе поиска возможностей ускорения развития нервной системы данное преимущество на стороне клинико-физиологических разработок (фармакотерапии, физиотерапии и др.).

Использование постоянных микротоков в несколько сотен микроампер в детском возрасте имеет более короткую историю, реализуемую в основном в отечественной физиологии и медицине, и в последнее десятилетие – с явной интенсификацией исследований, что актуально в условиях объективного роста числа детей с нарушениями психического развития церебрально-органического генеза (Богданов, 2001; Илюхина и др., 2002–2006; Кропотов и др., 2002; Чутко, 2004; Кропотов, 2005; Кожушко и др., 2005; Шелякин, Пономаренко, 2006; Пинчук, 2007; Шелякин и др., 2008).

Первоначальный вы бор электродов площадью 400–600 мм

(в среднем 20 ? 25 мм) определялся авторами тем, что она не должна превышать возможную площадь корковой проекции той или иной области мозга, а отношение выбранной силы тока к площади электрода не должно выходить за пределы значений терапевтических плотностей тока (0,01–0,1 мА/см

). При стандартных процедурах электросна и гальванизации при большой площади электродов (50 см

, ток 2–5 мА) воздействию подвергается практически весь мозг, что, как полагают, не может давать избирательный эффект. Рекомендуемые в учебных руководствах по физиотерапии современные плотности тока для дошкольников составляют 0,03 мА/ см

, у школьников 0,05 мА/см

<< 1 2 3 4 5 6 7 ... 13 >>
На страницу:
3 из 13