Когда происходит какое-либо изменение в балансе энергии, в климатической машине включаются механизмы положительного или отрицательного отклика, или обратной связи (рис. 1.10). Так, повышение температуры приводит к сокращению ледяного и снежного покрова. Альбедо Земли уменьшается, энергии поглощается больше, от этого становится еще теплее. И наоборот – при похолодании льды в полярных областях наступают, Земля отражает больше света, и холодает еще сильнее. Это работает положительная обратная связь лед – альбедо. Потепление приводит к таянию многолетней мерзлоты. При этом высвобождаются парниковые газы – CO
и метан. Они, в свою очередь, усиливают потепление. Это еще один пример положительного отклика, хотя ничего хорошего в этом, безусловно, нет – положительные обратные связи раскачивают климатическую систему, усиливая первоначальное воздействие. Отрицательные обратные связи, напротив, стабилизируют ситуацию. Так, с ростом температуры вода океана испаряется сильнее, растет площадь облаков, а они отражают солнечные лучи, охлаждая планету. Еще один пример отрицательной обратной связи – рост содержания углекислого газа в атмосфере идет на пользу растениям, которые, в свою очередь, эффективнее его утилизируют, возвращая систему в исходное состояние. Подобных обратных связей в климатической системе множество: проще говоря, все связано со всем. Многие из них изучены недостаточно.
Рис. 1.10. Пример системы с обратной связью. Отрицательная обратная связь: в котелке вода. При слишком бурном кипении она перельется через край, и огонь станет слабее. Положительная обратная связь: в котелке масло или керосин. Положительные обратные связи в технике – кошмар любого инженера. Именно их наличие в конструкции атомного реактора стало причиной катастрофы на Чернобыльской АЭС
1.5. Циркуляция атмосферы
Не существует на нашей планете Северного и Южного ветров, играющих сколько-нибудь важную роль. Северные и Южные ветры – лишь маленькие принцы тех династий, которые делают погоду на море. Они никогда не претендуют на господство на обширных пространствах. Они зависят от местных условий – конфигурации берегов, формы проливов, опасных мест у неприступных мысов, где они разыгрывают свою второстепенную роль. В государстве ветров, как и среди народов земного шара, настоящая борьба происходит лишь между Востоком и Западом[14 - Перевод М. Е. Абкиной.].
Джозеф Конрад. Зеркало морей
Как уже было сказано, движение атмосферы возникает вследствие неравномерного нагрева земной поверхности. Из-за сферической формы Земли в тропиках на единицу площади приходится больше солнечной энергии, чем в высоких широтах. Кроме того, в районе полюсов солнечные лучи проходят больший путь в атмосфере, прежде чем достигнут поверхности планеты, а значит, рассеиваются сильнее. Неравномерный нагрев приводит к неравномерному распределению атмосферного давления. Разница давлений (барический градиент) заставляет двигаться воздушные массы. Однако вращение Земли существенно влияет на это движение. Чтобы понять, как это происходит, рассмотрим простой пример.
Рис. 1.11. Девочки на карусели. Для наблюдателя во вращающейся системе мяч летит по дуге
Зоя и Нина катаются на карусели. Зоя стоит в центре, а Нина – на краю. Зоя бросает мяч в сторону Нины. Мяч летит прямо. Но Нина не поймает его. Пока мяч летел, карусель крутилась, и Нина сместилась (рис. 1.11). Никакая дополнительная сила на мяч не действовала, он просто летел прямо, своей дорогой. Это площадка карусели уходила из-под него. Но с точки зрения Нины, вращающейся вместе с каруселью, траектория мяча оказалась искривленной.
Живя на поверхности вращающейся планеты, мы не сильно отличаемся от девочек на карусели; разница лишь в том, что мы привыкли к этому движению и не осознаем его.
Эффект искривления траектории движения тел с точки зрения наблюдателя, находящегося во вращающейся системе отсчета, называется эффектом Кориолиса. Иногда для удобства считают, что система неподвижна, и вводят дополнительную фиктивную силу, называемую силой Кориолиса. Сила фиктивна, но ее проявления в нашем вращающемся мире вполне реальны. Эффект и сила названы в честь французского математика Гюстава Гаспара де Кориолиса (1792–1843).
Если объект движется в Северном полушарии с севера на юг, он отклоняется к западу. Это происходит потому, что Земля вращается вокруг своей оси с запада на восток. Очевидно, что точки на экваторе вращаются быстрее, чем точки, расположенные ближе к полюсам. Если движение происходит с юга на север, то отклонение происходит на восток, то есть в любом случае вправо.
Отклоняются объекты, движущиеся не только в меридиональном, но и в любом другом направлении. Не отклоняются лишь те, что движутся вдоль экватора. Действует универсальное правило: в Северном полушарии движущиеся объекты отклоняются вправо, в Южном – влево.
Атмосфера нагревается снизу, тепло она получает главным образом от поверхности суши или океана. В районе экватора, где поток солнечной энергии наибольший, воздух нагревается наиболее сильно, становится менее плотным и поднимается вверх. Так формируется зона пониженного давления в районе экватора, называемая внутритропической зоной конвергенции. Поднявшись до границы тропосферы, воздух не может преодолеть ее и движется в направлении полюсов, причем сила Кориолиса отклоняет его в восточном направлении. Воздух постепенно теряет тепло, излучая его в пространство. Остыв, он тяжелеет и опускается вниз, образуя зоны высокого давления по обе стороны от экватора в субтропиках, примерно на 30-м градусе широты. Так в атмосфере образуется тропическая ячейка циркуляции, или ячейка Хэдли (рис. 1.12), названная в честь английского ученого Джорджа Хэдли (1685–1768), искавшего причину пассатных ветров. Восходящей ветви ячейки Хэдли соответствует зона влажных экваториальных лесов, в нисходящей расположена большая часть пустынь (Сахара, Намиб, Австралийская пустыня, пустыни юга США). Это происходит потому, что в районе экватора влажный воздух поднимается, влага конденсируется и проливается дождями. Затем уже утративший влагу воздух движется от экватора. Когда воздух опускается, он нагревается и становится еще более сухим.
Рис. 1.12. Упрощенная схема крупномасштабной циркуляции атмосферы. Вращение Земли вокруг оси приводит к формированию трех ячеек циркуляции в каждом полушарии. Это затрудняет эффективный перенос тепла от экватора к полюсам. В реальности картина существенно сложнее, в частности из-за неравномерного нагрева суши и океана
У поверхности Земли тропическая циркуляция образует постоянную систему ветров, дующих из области высокого давления в субтропиках в зону низкого давления в районе экватора и благодаря эффекту Кориолиса отклоняющихся на запад. Эти ветра называются пассатами. Они дуют постоянно между 15 и 10 градусами с северо-востока в Северном полушарии, и с юго-востока – в Южном. Вблизи 30-го градуса широты в районе нисходящей ветви ячейки Хэдли над океаном формируются зоны высокого давления – здесь преобладают субтропические антициклоны. В центрах антициклонов, как правило, наблюдается безветренная погода. В эпоху парусных кораблей моряки называли эти широты конскими, потому что корабли, перевозившие лошадей через Атлантику, часто попадали в штиль в этих широтах и из-за нехватки воды и корма были вынуждены выбрасывать лошадей за борт. Штилевой пояс также располагается в районе экватора во внутритропической зоне конвергенции.
В высоких широтах формируется полярная ячейка циркуляции с нисходящей частью у полюсов и восходящей – в субполярных широтах около 60°. Между ней и ячейкой Хэдли иногда изображают ячейку с обратным направлением циркуляции – ячейку Ферреля, но она значительно менее выражена, чем тропическая и полярная ячейки. В умеренных широтах преобладают западные ветра, не столь устойчивые по силе и направлению, как пассаты.
1.6. Океан в движении
Движение вод в океане вызвано тремя причинами: силами тяготения Луны и Солнца; ветрами; различиями в плотности вод, которая зависит от солености и температуры.
Когда ветер дует над поверхностью океана, он приводит в движение и поверхностный слой воды. Вода движется медленнее, чем ветер. Если бы Земля при этом не вращалась, то движение воды по направлению совпадало бы с ветром. Но сила Кориолиса отклоняет воду вправо от направления ветра в Северном полушарии и влево – в Южном.
Это явление обнаружил норвежский полярный исследователь Нансен во время знаменитого дрейфа «Фрама». Он заметил, что движение корабля, вмерзшего в дрейфующий лед, отклоняется вправо на 20–40° от направления ветра. Объяснение этому явлению дал шведский океанолог Вагн Экман (1874–1954). Поверхностный слой воды приводится в движение ветром. Движется он медленнее, чем ветер, а значит, отклоняется силой Кориолиса сильнее. Верхний слой воды приводит в движение слой нижележащий, тот – следующий, благодаря чему отклонение от первоначального направления с глубиной усиливается (рис. 1.13).
До глубины 100–150 м спираль Экмана делает примерно пол-оборота. Здесь направление движения воды противоположно направлению на поверхности, но скорость уже слишком мала – около 4 % от поверхностной. Результирующий перенос воды происходит под углом 90° к первоначальному направлению ветра.
Энергия ветра передается лишь верхним 100–200 м воды. Однако экмановский перенос приводит к тому, что в некоторых зонах океана происходит подъем уровня поверхности, в других, напротив – понижение (рис. 1.14). Разность уровней приводит к перепаду давлений и, как следствие, к движению воды. Градиент давления уравновешивается силой Кориолиса, и движение воды происходит вдоль линий, соединяющих точки с равной высотой, – такое течение называется геострофическим. К геострофическим близки по природе основные течения Мирового океана, такие как Гольфстрим, Куросио, Агульяс, Антарктическое циркумполярное и другие. Геострофические течения достигают глубин до 2 км.
Рис. 1.13. Спираль Экмана
Экмановский перенос в сочетании с влиянием континентов приводит к образованию замкнутых систем циркуляции в океанах (рис. 1.15). В центре океанических круговоротов уровень поверхности повышается примерно на 1 м относительно среднего уровня. Вода движется по часовой стрелке в Северном полушарии и против часовой – в Южном. Западная часть системы круговоротов, называемая западными пограничными течениями, переносит теплую воду от экватора в более высокие широты. К ним относятся упомянутые выше Гольфстрим, Куросио, Агульяс. Западные пограничные течения более быстрые, узкие и глубокие, чем восточные. Асимметрия возникает из-за вращения Земли. Средняя скорость Гольфстрима 6,4 км/ч, ширина около 100 км. Гольфстрим переносит в 100 раз больше воды, чем все реки планеты. В действительности схема океанских течений выглядит существенно сложнее, чем показано на рис. 1.15, так как движение океана – процесс хаотический, в нем возникают меандры и вихри (рис. 1.16). Иногда они могут достигать сотен километров в диаметре и существовать до нескольких лет.
В центрах основных круговоротов Мирового океана скапливается дрейфующий мусор, поступающий с континентов. На акватории в 1,6 млн км
(это примерно 1/10 часть площади России) плавает около 100 тыс. т пластика. Почти наполовину этот мусор состоит из рыбацких сетей. Большая часть выловленных пластиковых объектов имеет маркировку на японском (30 %) и китайском (30 %) языках.
В апреле 2011 г. после землетрясения Тохоку, цунами и взрыва на Фукусиме автор этой книги в составе экспедиции на научно-исследовательском судне «Павел Гордиенко» на Дальнем Востоке изучал радиоактивное загрязнение акватории и атмосферы. За сотню миль за Сангарским проливом море было покрыто следами недавней трагедии: плавали куски пенопласта, покрышки, сколоченные между собой доски, резиновые мячики, ящики от шкафов. Скорее всего, часть этого мусора плавает и сейчас, пополнив Большое Тихоокеанское мусорное пятно – крупнейшее из скоплений мусора в Мировом океане. Землетрясение Тохоку вызвало увеличение площади пятна на 10–20 % от общего ее прироста с 2011 г. (Lebreton et al., 2018).
Рис. 1.14. Образование океанических круговоротов в Северном полушарии. В результате экмановского переноса в центре круговорота уровень океана поднимается, и формируется водяная линза. Вода движется под действием разности давлений из-за наклона поверхности и силы Кориолиса
Рис. 1.15. Замкнутые системы океанических течений. Упрощенная схема объединяет их в пять круговоротов: два – в Атлантике (в Северной и Южной), два – в Тихом океане и один – в Индийском
Рис. 1.16. Антициклонический вихрь (ринг) в океане размером примерно 150 км хорошо виден благодаря цветению фитопланктона. Он находится примерно в 800 км к югу от Южной Африки. По-видимому, вихрь отделился от течения Агульяс, направленного на юг вдоль восточного побережья Южной Африки. Вихри Агульяс – важная составляющая в переносе энергии и вещества из Индийского океана в Южный. Фото: NASA
Скопления мусора есть и в других круговоротах – в субтропической части Южной Атлантики (Ryan, 2014) и в южной части Тихого океана (Eriksen et al., 2013).
Течения, вызванные ветрами, затрагивают поверхностный слой океана и зону пикноклина (примерно до 1 км в глубину) и приводят в движение лишь небольшую часть (примерно 10 %) вод океана. Помимо ветров и приливных сил, существует еще один важнейший механизм, приводящий в движение весь океан. Это так называемая термохалинная циркуляция, которая связана с различиями в плотности воды из-за перепадов температуры и солености. В этот относительно медленный процесс вовлечена большая часть вод океана. Ключевым регионом, в котором запускается термохалинная циркуляция, является Северная Атлантика. Теплые воды Гольфстрима и его продолжения – Северо-Атлантического течения – движутся на север. Они передают тепло атмосфере, по мере испарения становятся все более холодными и солеными, постепенно тяжелеют и опускаются на глубину.
Почему именно в Северной Атлантике образуются глубинные воды? Это связано с неравномерным распределением соли в водах Мирового океана. Самые соленые поверхностные воды находятся в тропиках (15–30 градусов широты), где испарение превышает выпадение осадков. Оказывается, поверхностные воды в Атлантике существенно солонее, чем в Тихом океане. На одной и той же широте это различие составляет 1–2 г/л! Это результат взаимодействия преобладающих ветров с горными цепями Америки. В умеренных и субтропических широтах естественным барьером на пути западного переноса являются Кордильеры, тянущиеся от Аляски до Огненной Земли. Они не пускают влагу из Тихого океана вглубь континентов. Напротив, влага из Атлантики может проникать в Тихий океан с пассатами, дующими с востока на запад в тропиках, через понижение в центральной части Кордильер в районе Панамского перешейка. В результате влага, испаряющаяся в тропической Атлантике, проливается дождями в тропической части Тихого океана. Поскольку обратный перенос влаги затруднен, формируется разница в солености между Тихим и Атлантическим океанами. Эта разница и служит тем мотором, что приводит в движение глубинные воды Мирового океана. Работа его возможна лишь благодаря относительно небольшому разрыву в горной системе Кордильер.
В северной части Тихого океана глубинные воды не образуются – поверхностные воды здесь слишком распресненные, чтобы опуститься на дно. В Индийском океане они слишком теплые.
Важнейшую роль в циркуляции вод играет Южный океан. Через него глубинные воды Атлантики достигают Тихого океана. В Южном океане также происходит образование глубинных вод: в море Уэдделла в атлантическом секторе Антарктики и в море Росса (Rahmstorf, 2006). Механизм образования глубинных вод здесь иной. Когда море замерзает, растворенная соль большей частью вытесняется изо льда в воду. Это было хорошо известно полярным путешественникам прошлого, которые использовали многолетние морские льды как источник пресной воды. Поэтому при образовании морских льдов формируются тяжелые, обогащенные солью массы воды. Они опускаются вниз и заменяются менее плотными, тем самым внося вклад в циркуляцию океана (Kuhlbrodt et al., 2007). Важную роль в формировании глубинных вод в Южном океане играют полыньи, образующиеся под действием ветра, – через них происходит интенсивная потеря тепла. В Южном океане образуется примерно половина глубинных вод.
Термохалинная циркуляция – физический механизм, а не реально наблюдаемый процесс. Ее нельзя считать отдельным видом движения океана. Именно сочетание термохалинной циркуляции с поверхностными течениями и подъемом глубинных вод, так называемым апвеллингом[15 - От англ. up – вверх, и well – колодец.], приводит к запуску Большого океанического конвейера, то есть к вентилированию всей водной толщи Мирового океана (рис. 1.17). Определение радиоуглерода в морской воде (подробнее см. главу 2) показало, что время жизни глубинных вод достигает 1 тыс. лет. Это среднее время, которое каждая частичка воды проводит в толще, прежде чем апвеллинг поднимет ее на поверхность.
Рис. 1.17. Схематическое изображение Большого океанического конвейера (Broecker, 1991)
1.7. Хаос в климатической системе: бабочка Лоренца против демона Лапласа
Она упала на пол – изящное маленькое создание, способное нарушить равновесие, повалились маленькие костяшки домино… большие костяшки… огромные костяшки, соединенные цепью неисчислимых лет, составляющих Время[16 - Перевод Л. Жданова.].
Рэй Брэдбери. И грянул гром
Эдвард Лоренц (рис. 1.18) составлял прогнозы погоды для авиации США. После Второй мировой войны он продолжал работать по заказам военного ведомства и одним из первых начал использовать математические модели для прогнозирования погоды. В его распоряжении был компьютер LGP-30. Это была новинка, она весила более 300 кг и стоила целое состояние – почти полмиллиона долларов на нынешние деньги. Начинку компьютера составляли сто с лишним радиоламп.
Рис. 1.18. Эдвард Лоренц (1917–2008) – отец теории хаоса. Само по себе рождение новой теории, не менее важной, чем квантовая механика или теория относительности, из-за ошибки округления можно рассматривать как проявление хаоса в действии
Лоренц описывал состояние атмосферы системой дифференциальных уравнений. Он задавал начальные условия, и компьютер рассчитывал, как будут меняться параметры системы со временем. Однажды он решил повторить расчеты погоды на два месяца вперед и ради экономии времени сделал это не с текущей, а с другой даты и ввел в качестве исходных данных цифры из распечатки, сделанной ранее компьютером. Лоренц с удивлением обнаружил, что машина при повторном вычислении выдала уже другой результат. Причем в первые четыре дня старый и новый график шли одинаково, затем они полностью разошлись. Лоренц не сразу догадался, в чем дело. Результаты выводились на печать с тремя цифрами после запятой, тогда как компьютер оперировал шестью знаками. Округлив число до третьего знака, Лоренц задал системе новые начальные условия, пусть незначительно, но отличающиеся от прежних. И это мельчайшее различие со временем полностью изменило результат.
Компьютер преподал исследователю урок: если состояние атмосферы описывается подобной системой уравнений, то долгосрочный прогноз в принципе невозможен. И не важно, сколько станций наблюдает за погодой, какие суперкомпьютеры применяются для обработки данных.
Из эксперимента следовали и более общие выводы. Выходило, что система, пусть даже однозначно заданная несколькими уравнениями, может вести себя хаотически. Согласно Лоренцу, хаосом называется нерегулярное, случайное поведение систем, в то же время детерминированных по сути. Сам он сформулировал это так (Lorenz, n. d.):
«Хаос – это когда настоящее определяет будущее, но приблизительное настоящее не определяет будущего даже приблизительно».
Коллеги к открытию Лоренца отнеслись скептически (Lorenz, 1963):
«Один метеоролог сказал мне, что если бы теория была верна, то одного взмаха крыльев чайки было бы достаточно, чтобы изменить погоду навсегда. Спор не решен окончательно, но самые последние данные, похоже, говорят в пользу чаек».
Позже Лоренц назвал одно из своих выступлений «Предсказуемость: может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?». Лоренц не дает прямого ответа на этот вопрос. Метафора же бабочки, сменившей чайку, восходит к рассказу Рэя Брэдбери «И грянул гром». В мезозое гибнет бабочка – и вот уже в современном мире вместо президента-либерала к власти приходит диктатор. Выражение «эффект бабочки» принадлежит популяризатору теории хаоса Джеймсу Глейку, автору бестселлера «Хаос. Создание новой науки».