
Как распутать квантовую запутанность

В этом уравнении виден ещё один довод в пользу квантово-механической трактовки процесса как независимых событий. Мы видим, что справа от знака равенства стоит произведение двух величин. Случайно или нет, но оно выглядит как произведение двух вероятностей (события А и события В). Из классической теории вероятностей известно:
«Если для событий А и В выполняется равенство Р(АВ)=Р(А)Р(В), то эти события независимы».
Иногда эту теорему называют обратной теоремой умножения вероятностей, иногда признаком того, что события являются независимыми. «Что такое независимые события в жизни – понятно каждому. Это значит, что между событиями отсутствует причинно-следственная связь, осуществление одного никак не влияет на другое». Казалось бы, приведённое уравнение явно подпадает под это определение. Действительно, вероятность события А «регистрация фотона датчиком+ анализатора I» – это Р(А) = 1/2; вероятность события В «регистрация фотона датчиком+ анализатора II» – это Р(В) = cos2(a,b); результирующая вероятность «совместная регистрация фотонов датчиками+ анализаторов I и II» – это Р(АВ). О чём теперь можно спорить?! Есть о чём.
Дадим словесное описание этого уравнения в виде, удобном для нашего анализа. Вероятность Р(АВ) – это «вероятность того, что фотоны будут зарегистрированы одновременно в + каналах поляризаторов, которая зависит от угла между поляризаторами». Обратим внимание, что в этом описании угол между поляризаторами подразумевает как расстояние между ними, так и время между измерениями. Действительно, когда фотоны разлетелись, ничто не мешает нам повернуть эти поляризаторы (что, кстати, проделывал и Ален Аспект). И любой поворот в любое время будет учтён в момент прохождения поляризаторов фотонами (эксперименты Аспекта это подтвердили)! Угол определяется обоими поляризаторами независимо от расстояния и времени полёта вопреки утверждению Эйнштейна:
«… (состояние) системы S2 не зависит от того, что проделывают с пространственно отделённой от неё системой S1».
В момент второго измерения об изменении положения первого поляризатора сразу же становится известно второму поляризатору. Другими словами, этот угол (положение удалённого поляризатора) может постоянно изменяться, но в момент прихода фотонов он становится однозначно определённым. В момент прохождения второго фотона через свой поляризатор, этот второй фотон примет свою поляризацию, которая однозначно определяется положением первого поляризатора (углом с ним)! Этот второй фотон получит не какую-то, неизвестно откуда взявшуюся поляризацию, а поляризацию, которая зависит от положения удалённого от фотона первого поляризатора.
Как можно произвести решение уравнения Малуса традиционным способом? Мы определяем (фиксируем, вычисляем, измеряем) угол близлежащего к нам (второго) поляризатора. Затем получаем (по почте, по телефону, по радио или глядя в телескоп) угол (положение) удалённого (первого) поляризатора и вычисляем как разницу результирующий угол. После чего подставляем его значение в уравнение закона. Результат наших вычислений зависит от получения положения удалённого поляризатора. В описанных обстоятельствах отрицать зависимость событий в экспериментах Аспекта (в парадоксе ЭПР, в законе Малуса) – полный абсурд.
С учетом сказанного, попробуем дать другое определение событиям, которые описываются квантовой нелокальностью в этом эксперименте и которые входят (похоже, незаметно для многих) в уравнение закона Малуса. Очевидно, первым событием А остаётся событие «Регистрация первого фотона в + канале регистратора». Это автономное, независимое событие, имеющее вероятность наступления 1/2. Нет никаких указаний на то, что это значение вероятности может быть изменено каким-либо способом. Ничто не может повлиять на исход первого измерения. При любом измерении эта величина вероятности остаётся неизменной, то есть на неё в принципе не оказывается никакого влияния. Либо это такое «влияние», которое никак не изменяет результат.
Но этого нельзя сказать о втором измерении. Его результат явно зависит от результата первого измерения. Второе событие (событие В) никогда не наступит, пока не наступит первое! А в чем состоит оно, это второе событие? Правильным следует считать такое определение второго события: «Регистрация второго фотона в + канале регистратора, который повёрнут под углом к первому регистратору при условии, что первый фотон был зарегистрирован в + канале регистратора», то есть, когда событие А наступило. В такой формулировке событие В является условно зависимым от события А. Вероятность этого события равна:

где:
θ –угол между поляризацией фотона и поляризатора, который с учетом условий нашего эксперимента в точности равен углу между поляризаторами.
Невозможно представить себе совместное обнаружение фотонов, если один из регистраторов не обнаружил фотона. Это означает, что наступление второго события возможно тогда и только тогда, когда наступило событие первое. Классическая теория вероятностей это объявляет признаком зависимости событий:
«Два события А и В называются зависимыми, если появление одного из них изменяет вероятность появления другого».
Если второе событие не наступило, то вероятность совместного обнаружения фотонов – событие недостоверное:
«Два события считаются независимыми, если вероятность одного из них не зависит от появления или не появления другого события».
Если второе событие наступило – то вероятность совместного обнаружения фотонов становится определённой величиной. То есть, мы твёрдо убеждены, что описанные два события, входящие в выражение закона Малуса – зависимые. Но как же быть с определением независимости событий, приведённым выше? Возникает двусмысленность? Нет. В той же классической теории вероятностей есть такое определение:
«Теорема умножения вероятностей. Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило: Р(АВ) = Р(А)РА(В)».
Кроме того есть определение, проводящее связь между приведёнными формулировками теорем умножения:
«Определение. Событие В называется независимым от события А, если появление события А не изменяет вероятности В, то есть РА(В) = Р (В)».
Что следует из приведённых доводов? Главное: события при измерении двух удалённых фотонов являются зависимыми. А это означает, что между ними имеется какая-то связь, которая противоречит лоренц-инвариантности. То есть, квантово-механическая запутанность противоречит теории относительности Эйнштейна. С позиции релятивистской теории не могут два удалённых объекта взаимодействовать, передавать друг другу какую-либо информацию быстрее скорости света. Налицо противоречие между явлением нелокальности квантовой механики и специальной теорией относительности. Противоречие это возникло при попытке отказаться от мистической квантово-механической нелокальности и использовании для объяснения явления запутанности положений классической теории вероятности. От нелокальность мы отказались, но взамен получили противоречие с лоренц-инвариантностью. Нелокальность – это мистическое синхронное поведение объектов при отсутствии между ними какой бы то ни было связи. Трактовка с позиции классической теории вероятности – это признание сверхсветовой связи между объектами. Этакое абсурдное воплощение эйнштейновского локального реализма, «призрачного дальнодействия», как его называл Эйнштейн [13, 16].
Однако, мы не склонны считать это подменой одного мистического явления другим. Сверхсветовой синхронизм поведения – физический факт. Более того. Следует ожидать, что этот факт должен проявиться и в чём-либо ещё. И такое проявление имеет под собой весьма веские основания, позволяя поставить под вопрос истинность специальной теории относительности.
Противоречие между КМ и СТО
Какого-либо сигнала, с помощью которого квантовые частицы обмениваются информацией, до настоящего времени не зафиксировано. В своих экспериментах Аспект регистрировал сверхсветовое взаимное влияние состояния одной частицы на состояние другой, но передачи информации при этом обнаружено не было. Тем не менее, явление запутанности позволяет в принципе организовать проведение эксперимента, который явным образом может трактоваться как демонстрация информационной сверхсветовой связи между частицами, что в свою очередь позволяет показать синхронность хода часов, движущихся друг относительно друга. Это означает, что утверждение СТО о том, что движущиеся часы отстают, – противоречит явлению нелокальности. Отсюда следует вывод, что между квантовой теорией и специальной теорией относительности существует неустранимое противоречие, касающееся скорости передачи взаимодействия и квантовой нелокальности.
Рассмотрим мысленный эксперимент [15, 11, 9, 10, 17], который показывает, что часы в движущихся друг относительно друга ИСО идут синхронно вопреки положениям СТО. Соберём экспериментальную установку из трёх ИСО: лабораторной (неподвижной) и двух ИСО А и В, движущихся навстречу друг другу с одинаковыми скоростями относительно неподвижной ИСО.

Рис.3 Две движущиеся инерциальные системы с точки зрения неподвижной ИСО. Источник запутанных фотонов неподвижен и фотоны из каждой пары приходят в движущиеся ИСО одновременно. Строенные стрелки-молнии указывают на точки, в которых находились фотоны в момент коллапса волновой функции.
Движение двух ИСО А и В с точки зрения неподвижной ИСО происходит в сторону источника запутанных фотонов S с одинаковой удаленности от него таким образом, что фотоны v1 и v2 из каждой пары достигают каждый своей ИСО одновременно.
Мы производим линейные измерения поляризации этих двух фотонов анализаторами I и II. Анализатор I в направлении a (справа налево) снабжен двумя датчиками и дает результаты + или -, если встречена линейная поляризации параллельная или перпендикулярная к a. Анализатор II в направлении b (слева направо) действует аналогично. Не трудно заметить, что установка в общих чертах соответствует мысленному эксперименту Эйнштейна-Подольского-Розена-Бома с фотонами, приведенному в статье Алена Аспекта [3, 5, 6, 2, 1].
Установим скорость сближения двух ИСО равной приблизительно 0,86с, что соответствует релятивистскому замедлению времени в 2 раза. Расстояние между ИСО А и В выберем таким, что каждая из ИСО достигнет источника фотонов S через 2 часа. Фотоны v1 и v2 достигают измерителей I или II, в результате чего происходит коллапс волновой функции, описывающей их состояние. Жёлтой линией условно показана нелокальная связь частиц, условный путь передачи так называемой «квантовой информации». При этом частицы приобретают собственные состояния (на рисунке это условно показано «молниями»).
В процессе движения этих ИСО показания измерительных приборов регистрируются на каком-либо носителе. Когда две ИСО сойдутся в точке размещения источника запутанных фотонов S, анализ полученных данных покажет [15], что часы в двух движущихся относительно друг друга ИСО идут синхронно. При этом СТО вынуждена дать предсказания о наступлении одного и того же события в двух разных местах. Эти два взаимоисключающих предсказания являются следствием предположения, что коллапс волновой функции происходит мгновенно независимо от расстояния между объектами. Мгновенная передача сигнала в СТО невозможна и собственно передачи сигнала в этом мысленном эксперименте не зарегистрировано, достигнуто лишь мгновенно-одновременное снятие показаний движущихся часов.
Все иллюстрации нарисованы автором.
Литература
:
1. Aspect A., Dalibard J., Roger G., Experimental Test of Bell’s Inequalities Using Time-Varying Analysers. – Phys. Rev. Lett. 49, 25, (1982). (http://kh.bu.edu/qcl/pdf/aspect_a1982707d6d64.pdf)
2. Aspect A., Grangier P., Roger G., Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. – Phys. Rev. Lett. 49, 2, (1982).
3. Aspect А. «Bell’s theorem: the naive view of an experimentalist», 2001,
(http://quantum3000.narod.ru/papers/edu/aspect_bell.zip)
4. Bell J.S., On the Einstein Podolsky Rosen paradox, Physics Vol.1, No.3, pp.198-200, 1964
5. Ален Аспект, Теорема Белла: наивный взгляд экспериментатора, (Пер. с англ. Путенихина П.В.), Квантовая Магия, 4, 2135 (2007).
http://quantmagic.narod.ru/volumes/VOL422007/p2135.html
6. Ален Аспект, Теорема Белла: наивный взгляд экспериментатора, (Пер. М.Х.Шульмана), Институт исследований природы времени, 2006,
http://www.chronos.msu.ru/RREPORTS/aspek_teorema_bella.pdf
7. Лекция 3. Теоремы сложения и умножения вероятностей,
http://apollyon1986.narod.ru/docs/TViMS/NP/lekziitv/LEKZIYA3.HTM
8. Огурцов А.Н. Физика для студентов. Квантовая физика. Лекции по физике, 7,
http://www.ilt.kharkov.ua/bvi/ogurtsov/lect7quant.pdf
9. Путенихин П.В., Великая тайна специальной теории относительности, Квант. Маг. 7, 3101 (2010),
http://quantmagic.narod.ru/volumes/VOL732010/p3101.html
http://zhurnal.lib.ru/editors/p/putenihin_p_w/tajna.shtml
http://www.sciteclibrary.ru/rus/catalog/pages/10341.html
10. Путенихин П.В., Главная загадка физики квантов, Самиздат, 2009,
http://zhurnal.lib.ru/p/putenihin_p_w/gzfk.shtml
http://sciteclibrary.ru/rus/catalog/pages/9818.html
http://quantmagic.narod.ru/volumes/VOL642009/p4126.html
11. Путенихин П.В., Квантовая механика против СТО, Квантовая Магия, 4, 2130 (2007),
http://quantmagic.narod.ru/volumes/VOL422007/p2130.html
http://www.sciteclibrary.ru/rus/catalog/pages/8918.html
http://zhurnal.lib.ru/editors/p/putenihin_p_w/kmvsto.shtml
12. Путенихин П.В., Комментарии к выводам Белла в статье «Парадокс Эйнштейна, Подольского, Розена», SciTecLibrary, 2008,
http://www.sciteclibrary.ru/rus/catalog/pages/8979.html
http://www.sciteclibrary.ru/texsts/rus/stat/st2213.pdf
13. Путенихин П.В., Локальный реализм Эйнштейна. – Самиздат, 2008,
http://zhurnal.lib.ru/p/putenihin_p_w/localism.shtml
15. Путенихин П.В., Противоречие между квантовой механикой и СТО, Квант. Маг. 7, 3115 (2010),
http://quantmagic.narod.ru/volumes/VOL732010/p3115.html
http://www.sciteclibrary.ru/rus/catalog/pages/10373.html
http://zhurnal.lib.ru/editors/p/putenihin_p_w/protiv.shtml
16. Путенихин П.В., Сущность локализма, Квантовая Магия, 5, 2201 (2008),
http://quantmagic.narod.ru/volumes/VOL522008/p2201.html
http://www.sciteclibrary.ru/rus/catalog/pages/9072.html
17. Путенихин П.В., Три ошибки анти-СТО, SciTecLibrary, 2011,
http://www.sciteclibrary.ru/rus/catalog/pages/11390.html
http://zhurnal.lib.ru/p/putenihin_p_w/antisto.shtml
18. Путенихин П.В., Эксперимент по схеме Аспекта с источником псевдо-запутанных частиц, Квантовая Магия, 4, 2167 (2007),
http://quantmagic.narod.ru/volumes/VOL422007/p2167.html
http://www.sciteclibrary.ru/rus/catalog/pages/9016.html
http://zhurnal.lib.ru/p/putenihin_p_w/pseudo.shtml
19. Путенихин П.В.: Bell J.S., On the Einstein Podolsky Rosen paradox (перевод с англ. – П.В.Путенихин; комментарии к выводам и оригинальный текст статьи), Квантовая Магия, 5, 2160 (2008),
http://quantmagic.narod.ru/volumes/VOL522008/p2160.html
http://zhurnal.lib.ru/editors/p/putenihin_p_w/bell.shtml
20. Эйнштейн А. Собрание научных трудов в четырех томах. Том 4. Статьи, рецензии, письма. Эволюция физики. М.: Наука, 1967,
http://eqworld.ipmnet.ru/ru/library/books/Einstein_t4_1967ru.djvu
21. Эйнштейн А., Подольский Б., Розен Н. Можно ли считать квантовомеханическое описание физической реальности полным? / Эйнштейн А. Собр. научных трудов, т. 3. M., Наука, 1966, с.604-611
http://eqworld.ipmnet.ru/ru/library/books/Einstein_t3_1966ru.djvu