Оценить:
 Рейтинг: 1

Информатика и ИТ. Нейросети.

<< 1 ... 8 9 10 11 12 13 >>
На страницу:
12 из 13
Настройки чтения
Размер шрифта
Высота строк
Поля

Сканеры и цифровая аппаратура используют светочувствительные элементы, при попадании на которые световой или лазерный луч передает характеристики точек. Эти характеристики в цифровом формате сохраняются на элементах памяти и, тем самым, достигается возможность передать изображение в компьютерную обработку.

Из-за разнообразия типов изображений и областей из использования существует огромное количество разнообразных графических форматов. Для того, чтобы программы понимали файлы разных форматов, существуют конвертеры – программы, переводящие файлы из формата в формат. Существует несколько наиболее употребительных форматов:

– .bmp – для хранения и передачи изображений в среде Windows;

– .jpg – для хранения изображений с применением сжатия (удаления избыточной информации);

– .gif – для хранения сжатых изображений с фиксированным количеством цветов, разрабатывался для применения в Интернете;

– .tif – предназначен для хранения изображений высокого (полиграфического) качества, имеется возможность перенесения на другие аппаратные платформы и т.д..

Векторная графика

Векторные изображения формируется из набора математически представленных геометрических объектов.

Рисунок хранится как набор координат, векторов и других чисел, характеризующих набор примитивов. Наиболее распространенными примитивами являются: отрезки, прямоугольники и их производные (со сглаженными углами), эллипсы и их части, кривые Безье (математические кривые третьего порядка, задаваемые 4 точками), а также составленные из них сложные контуры.

Линии – это кривые разных порядков, при этом прямая рассматривается как частный случай кривой; они обладают свойствами – толщиной, цветом, начертанием (сплошная, штриховая). Из минимальных объектов-линий создаются контуры. Каждый контур имеет 2 или более опорные точки-узлы. Если 1-ая точка совпадает с последней – конур замкнут, и приобретает свойство заполнения (цветом, рисунком-текстурой, градиентной заливкой).

Большим преимуществом векторного представления графики является значительно меньший объем файлов по сравнению с растровой – изображение описывается не битовой картой, а несколькими формулами, при этом объем файла не зависит от размеров изображения. Еще одно достоинство векторного представления – его объектность: объекты легко выделять, при всех трансформациях (уменьшение, увеличение, искажение) качество не ухудшается и не зависит от разрешения.

Недостатком этой формы представления относится большая сложность создания фотореалистичных изображений и высокие требования к ресурсам вычислительной системы, необходимым для пересчета координат объектов при трансформации.

Устройством ввода векторного изображения является дигитайзер (сколка). Механическое воздействие на панель этого устройства позволяет фиксировать координаты точек, а сила нажатия – определять толщину линии между точками.

Распространенными форматами хранения векторных изображений являются:

– .wmf – формат хранения векторных изображений в Windows;

– .ai,.cdf – собственные форматы векторных редакторов AdobeIllustrator и CorelDraw, совместимые друг с другом.

– .dwg – формат файлов конструкторского программного пакета AutoCad.

Компьютерное представление звука

Звук – это продольная механическая волна, распространяемая в воздухе или другой среде во всех направлениях от источника колебаний.

Всякий звук (игра музыкальных инструментов, голос человека) – это своеобразная смесь многих гармонических колебаний с определенным набором частот. Как и любая волна, звуковая волна характеризуется двумя основными параметрами – амплитудой и частотой.

Частота – это количество звуковых колебаний в секунду; измеряется в герцах (Гц). Чем выше частота, тем выше тон звука.

Амплитуда колебаний определяет громкость звука и зависит в первую очередь от мощности источника звука.

Абсолютную величину звукового давления измеряют в паскалях (Па). Порогом слышимости обладают звуки, имеющие амплитуду около 20мкПа (2*10

 Па). Уровень болевого порога слышимости около 200 Па, т.е минимальное и максимальное значения отличаются на 6—7 порядков. Из-за большого разброса величин абсолютными значениями пользоваться неудобно, и используют логарифмическую шкалу децибелов.

Десятичный логарифм отношения некоторой величины к ее эталонному значению (порогу слышимости) называется белом (Б), а его десятая часть – децибелом (дБ).

,

где L – уровень звука в дБ

Р

 – измеряемое звуковое давление

Р

 – звуковое давление порога слышимости

Звук можно представить в виде кривой, которая показывает зависимость звукового давления от времени. Замеряя напряжение через равные промежутки времени и сохраняя полученные численные значения можно дискретизировать (оцифровать звук). При этом сохраняются мгновенные значения звукового сигнала в определенные моменты времени (выборки). Чем чаще берутся выборки, тем точнее цифровая копия звука.

Частота следования отсчетов называется частотой дискретизации, а диапазон значений отсчета определяется разрядностью его двоичного представления.

При цифровом способе хранения звука не сохраняется весь профиль кривой звукового давления (и соответственно, сопоставленного ему напряжения). На рис.3.4 проиллюстрированы потери информации об истинном изменении времени и значениях амплитуды.

Для того чтобы воспроизвести закодированный таким образом звук, нужно выполнить обратное преобразование, и сгладить получившийся ступенчатый сигнал.

Рис. 3.4. Потери информации при дискредитации звука

Устройство, выполняющее оцифровку (кодирование аналогового сигнала), называется аналого-цифровым преобразователем (АЦП).

Для обратного преобразования служит цифро-аналоговый преобразователь (ЦАП).

Дискретизация сигнала с произвольной частотой не всегда дает возможность восстановить форму входного сигнала, а использование частоты в два раза большей, чем частота фиксируемого сигнала однозначно даст восстановление искомой формы.

Это утверждение является одной из важнейших теорем, используемых в теории информации, теорема В.А.Котельникова (в англоязычной литературе – теорема Найквиста-Шеннона):

Непрерывная функция Х (t) не имеющая в своем спектре составляющих с частотами, лежащими за пределами полосы f (-F

F

), полностью определяется последовательностью своих отсчетов в дискретные моменты времени X (t

), следующих с шагом t <1/2F

.

Таким образом, по дискретной последовательности отсчетов всегда можно восстановить исходную непрерывную функцию Х (t), если отсчеты брались с интервалом t <1/2F

. То есть любой непрерывный сигнал может быть преобразован в дискретную последовательность, а затем восстановлен по последовательности своих дискретных значений.

Человеческое ухо воспринимает чистые гармонические тоны в том случае, если их частоты не превышают 20 килогерц, т.е. 20 тысяч колебаний в секунду. Остальные тоны, частоты которых выше 20 килогерц, оказываются неслышимыми для человека – ультразвук. Этот факт ограниченности возможностей человеческого уха по частоте и предоставляет возможность установления разумного интервала для снятия значений звукового давления.

Точная формулировка теоремы Котельникова применима только к сигналам с неизменными частотными характеристиками и бесконечной длительностью, и поэтому для оцифровки реальных звуковых сигналов выбирают несколько большую частоту дискретизации (с запасом).

Предел восприятия частоты звука составляет 20 КГц, и частоты 40 КГц будет вполне достаточно для осуществления цифровой записи, лишенной искажений, но при этом некоторые шумы и искажения в записи все же будут присутствовать. В современной цифровой записи звука принят стандарт записи с частотой снятия значения звукового давления, или частотой дискретизации, равной 44100 герц. Компьютер позволяет записывать звук, как с большими, так и с меньшими частотами дискретизации.
<< 1 ... 8 9 10 11 12 13 >>
На страницу:
12 из 13