На основе структуры процесса создана модель адаптационного обучения перечисленным модулям дисциплины на протяжении трех периодов (подготовительном, дидактическом, профессионально ориентирующем) с присущими для каждого периода компонентами: целью, содержанием, формами, методами и средствами обучения. Особенностью модели является элемент коррекции знаний школьного курса химии и усиление входного контроля знаний как способов достижения адаптации студентов в новой организационной системе обучения, требующей их развитой интеллектуальной деятельности.
Процессуальные компоненты (формы, методы и средства обучения) содержат аспект обучения на двуязычной основе, повышающий уровень адаптированности – готовности студентов к учебной деятельности при изучении химических дисциплин. Адаптированность оценивается критериальным аппаратом, входящим в структуру процесса учебно-дидактической адаптации.
Глава 2
СТРУКТУРИРОВАНИЕ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ ПРИ АДАПТАЦИОННОМ ОБУЧЕНИИ
Методической основой адаптационного обучения химии является семантизированное освоение понятийно-терминологического аппарата (ПТА) на родном и русском языках. В устойчивом освоении терминов, понятий и определений, осознании дальнейшей применимости ПТА при изучении химических дисциплин, в профессиональной необходимости тезауруса специалиста есть аспекты адаптации и развития студентов, то есть их предметно-ориентированного адаптационного обучения.
При использовании метода семантизированного освоения понятийно-терминологического аппарата химии представляется необходимым выбор соответствующих и дополняющих друг друга подходов к отбору и структурированию содержания изучаемой дисциплины и ее ПТА. На наш взгляд, наибольшее дидактическое соответствие устанавливается между модульным и тезаурусным подходами, которые позволяют структурировать содержание учебной дисциплины на уровне дидактических единиц (терминов, понятий).
2.1. Модульное структурирование содержания химической дисциплины
Принципы модульности, структуризации и динамичности, на которых базируется модульный подход к изучению дисциплины, послужили руководством к представлению содержания дисциплины «Общая и неорганическая химия» в виде совокупности модулей (М) и учебных элементов (УЭ), что приобретает особую значимость при структурно-логическом изложении и восприятии учебного материала на двуязычной основе. «Общая и неорганическая химия» (ОиНХ) состоит из двух курсов – «Общая химия» и «Неорганическая химия». Она относится к дисциплинам естественно-научного цикла и, находясь в генетической взаимосвязи с химическими дисциплинами общепрофесионального и специального циклов, является для них источником базовых дескрипторов ПТА. Семантизированное освоение дескрипторов учебных элементов ОиНХ по двуязычным методам – залог успешного усвоения содержания химических дисциплин других циклов, а следовательно, и достижения адаптированности к учебной деятельности при химическом образовании в вузе.
Модульный подход к отбору и структурированию содержания курса химии с целью его познания студентами в процессе их обучения в вузе находится в соответствии с системным подходом, нацеленным на эффективное построение этого курса, который рассматривается в ряде учебной литературы. Системный подход к построению курса химии отражен в работах О.С. Зайцева [21] и других исследователей (З.А. Решетовой, Е.М. Соколовской, Т.А. Сергеевой). Курсу «Общая и неорганическая химия», изучаемому в технологических вузах, в том числе в КНИТУ, отвечает подход к системному построению курса химии, изложенный в работах О.С. Зайцева [20, 21]. Автором курс химии рассматривается как система четырех основных учений – термодинамики, кинетики, учения о строении вещества и учения о периодическом изменении свойств элементов и их соединений, а процесс обучения химии заключается в рассмотрении вещества и реакций с точки зрения этих четырех учений.
Системное построение курса химии в базовом для КНИТУ учебнике Н.С. Ахметова «Общая и неорганическая химия» как нельзя лучше предоставляет возможность модульного структурирования содержания химии [1]. Учебник состоит из двух частей: часть первая – «Общая химия», часть вторая – «Неорганическая химия». Разделение учебника на две части само по себе предполагает выделение двух основных блоков, содержание которых разделяется на модули.
В календарных планах лекций и лабораторно-практических занятий, составляемых на кафедре неорганической химии КНИТУ для учебного процесса студентов технологических специальностей, по курсу общей химии выделяются следующие темы: строение атома, периодическая система химических элементов Д.И. Менделеева, химическая связь, агрегатное состояние и растворы, энергетика химических превращений, химическое равновесие, химическая кинетика, гидролиз, окислительно-восстановительные реакции. По курсу неорганической химии – темы, касающиеся изучения химии s-, p-, d– и f-элементов.
Модульное структурирование содержания общей химии позволяет каждую из девяти тем данного курса представить как самостоятельный модуль (М-1 – М-9), а темы по изучению химии элементов – в виде четырех модулей (М-10 – М-13), имеющих единый алгоритм изучения химии каждого типа элемента (s-, p-, d– и f-элемента). Модульное структурирование содержания курсов «Общая химия» и «Неорганическая химия» представлено соответственно в прил. 2 и прил. 3.
Поскольку изучение модулей М-10 – М-13 по неорганической химии осуществляется с опорой на знания, полученные при изучении модулей курса общей химии М-1 – М-9, и обобщением этих знаний, то их можно обозначить как выходные модули, а модули курса общей химии – как промежуточные модули. При адаптационном обучении химии за входной модуль М-0 следует принять тему по классам химических веществ и генетической связи между ними (из школьного курса), так как она вмещает значительную основополагающую химическую информацию и связывает школьный курс химии с вузовским курсом (прил. 1).
Модуль М-0 включает тринадцать параграфов углубленного школьного курса химии: химические вещества, индивидуальные вещества, смеси веществ, неорганические вещества, органические вещества, простые вещества, сложные вещества, металлы, неметаллы, оксиды, основания, кислоты, соли. В содержание каждого учебного параграфа входят понятия, термины, определения, то есть дескрипторы, знание которых обязательно для дальнейшего усвоения химических курсов вуза и которые являются обязательными понятийными (лексическими) единицами в тезаурусе химика.
Особое значение данному модулю придается при адаптационном изучении химии на двуязычной основе (на русском и родном, нерусском, языках), поскольку он терминологически и номенклатурно насыщен. С учетом того, что одни учащиеся, будучи выпускниками национальных учебных заведений, не владеют в совершенстве химической терминологией на русском языке, а другие, изучавшие химию в выпускных классах (при подготовке к ЕГЭ) на русском языке, не имеют устоявшихся навыков использования химической терминологии на национальном языке, приобретение основательных знаний по классам неорганических соединений служит залогом успешного усвоения вузовского курса общей и неорганической химии на двуязычной основе. Поэтому материал данного модуля должен актуализироваться в начале I семестра в подготовительный период учебно-дидактической адаптации.
Дальнейшее структурирование изучаемого материала по химии предполагает выделение в каждом модуле учебных элементов УЭ с определением их содержания (прил. 2, 3) [89, 90]. В данном случае под УЭ будем понимать определенный целостный фрагмент информации (по определению А.М. Сохора, отрезок учебного материала), а под содержанием УЭ – систему химических понятий [69]. Учебные элементы нацелены на формирование у студентов отдельных знаний, умений и навыков в процессе самообучения или обучения под руководством преподавателя. Учебные элементы удобны тем, что они могут быть встроены в любой модуль содержания учебного курса – входной, промежуточный или выходной. В этом проявление принципа динамичности модульного обучения.
Логическая структура блока 0, блока 1, блока 2 химической дисциплины, изучаемой в адаптационном режиме на первом курсе технологического вуза, с выделением соответствующих модулей М-0; M-1 – M-9; M-10 – M-13 и учебных элементов в них УЭ-I – УЭ-XIII; УЭ-1 – УЭ-35; УЭ-36 – УЭ-49 представлена в прил. 8.
В блоке 0 имеется модуль М-0, в котором обозначенные ранее тринадцать учебных параграфов именуются учебными элементами УЭ-I – УЭ-XIII.
В блоке 1 интегрированы девять модулей, каждый из которых состоит из учебных элементов: М-1 «Строение атома» (УЭ-1 – УЭ-6); М-2 «Периодическая система химических элементов Д.И. Менделеева» (УЭ-7 – УЭ-11); М-3 «Химическая связь» (УЭ-12 – УЭ-14); М-4 «Агрегатное состояние. Растворы» (УЭ-15 – УЭ-17); М-5 «Энергетика химических превращений» (УЭ-18 – УЭ-20); М-6 «Химическое равновесие» (УЭ-21 – УЭ-23); М-7 «Химическая кинетика» (УЭ-24 – УЭ26); М-8 «Гидролиз» (УЭ-27 – УЭ-32); М-9 «Окислительновосстановительные реакции» (УЭ-33 – УЭ-35).
В блоке 2 имеются четыре модуля, включающие свои учебные элементы: М-10 «Химия s-элементов» (УЭ-36 – УЭ-37); М-11 «Химия р-элементов» (УЭ-38 – УЭ-42); М-12 «Химия d-элементов» (УЭ-43 – УЭ-47); М-13 «Химия f-элементов» (УЭ-48 – УЭ-49).
На схеме логической структуры общей и неорганической химии, представленной в прил. 8, показана обусловленность блока 1 учебными элементами блока 0 и зависимость блока 2 от учебных элементов блока 1. На основании групповых экспертных оценок установлено использование тринадцати учебных элементов модуля М-0 в учебных элементах девяти промежуточных модулей – М-1, М-2, М-3, М-4, М-5, М-6, М-7, М-8, М-9 – с разной степенью интенсивности (прил. 9). Наиболее часто используемыми понятиями учебных элементов модуля М-0 в учебных элементах промежуточных модулей являются: химические вещества (используются в 26 учебных элементах), сложные вещества (24 УЭ), металлы (24 УЭ), неметаллы (17 УЭ), простые вещества (13 УЭ), основания (11 УЭ), соли (10 УЭ), кислоты (8 УЭ) и т.д. (прил. 10). Кроме того, достаточно наглядна густая сеть взаимосвязей учебных элементов модуля М-0 непосредственно с промежуточными модулями М-1, М-2, М-3, М-4, М-5, М-6, М-7, М-8, М-9 (прил. 9), что вызывает необходимость в подготовительном периоде адаптационного обучения первокурсников.
Целью актуализации содержания входного модуля М-0 (УЭ-I – УЭ-XIII) является коррекция довузовских химических знаний и доведение понятийно-терминологического аппарата до необходимого (стартового) уровня; овладение умениями и навыками, служащими основой для изучения химических дисциплин; реализация адаптационного потенциала студента.
Модульное обучение характеризуется согласованием комплексной, интегрированных и частных дидактических целей. При этом используется пирамида дидактических целей, предлагаемая П.А. Юцявичене [89]. В основе пирамиды находятся частные дидактические цели, каждой из которой соответствует УЭ. Так же, как УЭ объединены в модули, частные дидактические цели объединены в интегрирующую цель каждого модуля. Интегрирующие дидактические цели объединятся в комплексную цель (вершину пирамиды), реализацию которой обеспечивают конкретные модули.
При модульном обучении дисциплине «Общая и неорганическая химия» в период учебно-дидактической адаптации комплексной дидактической целью является достижение предметно-ориентированной дидактической адаптации студентов, характеризующейся адаптированностью к учебной деятельности при химической подготовке и успешным усвоением содержания дисциплины, представленного в модулях М-1 – М-13.
С учетом дидактической специфики входного модуля М-0 и его учебных элементов (УЭ-I – УЭ-XIII), целенаправленных на коррекцию довузовских знаний, коррекционные цели данного модуля составляют базис, на который возводится пирамида дидактических целей (рис. 4). Модули М-10, М-11, М-12, М-13, в содержание которых входит соответственно химия s-, p-, d– и f-элементов, кроме приобретения новых знаний, способствуют закреплению полученных при усвоении модулей М-1 – М-9 знаний на конкретных химических объектах (веществах и процессах). Студенты проявляют знания, умения и навыки при характеристике свойств химических веществ, проведении химических процессов, выборе методов их исследования, использовании реактивов, приборов и химической посуды.
Рис. 4. Пирамида дидактических целей: К – комплексная дидактическая цель; И1…И13 – интегрирующие дидактические цели; Ч1…Ч49 – частные дидактические цели; I…XIII – коррекционные дидактические цели
Учебные элементы выходных модулей М-10, М-11, М-12, М-13 по химии s-, p-, d– и f-элементов изучаются по единому алгоритму, учитывающему логическую последовательность промежуточных модулей М-1 – М-9 и содержание их учебных элементов. Алгоритм изучения химии какого-либо типа элемента состоит из следующих шагов:
1) общая характеристика подгруппы элементов:
– состав подгруппы элементов;
– строение атомов элементов;
– периодичность свойств элементов (радиусы атомов, энергии ионизации атомов, сродство к электрону атомов, электроотрицательность элементов, степени окисления элементов);
– типы соединений и нахождение в природе;
2) простые вещества элементов:
– состав и строение молекул (на основе теорий химической связи);
– физические свойства веществ (на основе агрегатного состояния и растворимости);
– получение простых веществ (на основе представлений об энергетике химических превращений);
– химические свойства веществ (на основе представлений об энергетике химических превращений, химической кинетике, химическом равновесии, гидролизе, окислительно-восстановительных реакциях);
3) сложные вещества элементов:
– состав и строение молекул (на основе теорий химической связи);
– физические свойства веществ (на основе агрегатного состояния и растворимости);
– получение сложных веществ (на основе представлений об энергетике химических превращений);
– химические свойства веществ (на основе представлений об энергетике химических превращений, химической кинетике, химическом равновесии, гидролизе, окислительно-восстановительных реакциях).
Схематичное изображение данного алгоритма в виде интеграции модулей внутри дисциплины «Общая и неорганическая химия» представлено в прил. 11. Наглядная схема усиливает представление о взаимосвязи курсов «Общая химия» и «Неорганическая химия», о том, что основополагающая информация модулей блока 1 необходима для усвоения содержания модулей блока 2. В зависимости от того, насколько полно достигнуты дидактические частные цели при усвоении учебных элементов и интегрирующие цели при изучении модулей, будет зависеть достижение комплексной цели в период учебно-дидактической адаптации студентов первого курса.
Алгоритм действий при неоднократном его использовании в процессе изучения химии элементов начинает служить ориентировочной основой действия (ООД). Данный алгоритм действий нами используется и при составлении контрольных заданий по разделам, касающимся химии s-, p– и d-элементов. Последовательность заданий по каждому разделу выстраивается так, что каждое предыдущее задание создает ориентировочную основу действия для решения последующего задания [30].
При четком, разграничительном характере модульного структурирования изучаемого материала логически оправдано использование схем ООД, то есть алгоритмов действий. Выработка алгоритмов действий находится в соответствии с принципом структуризации содержания, и в рамках учебных элементов происходит дальнейшее структурирование материала при отдельных действиях (шагах). С этих позиций особо важным становится применение схем ООД в лабораторном практикуме не только для того, чтобы грамотно и продуктивно выполнить лабораторную работу, но и с целью приобретения профессионально значимых качеств специалиста (формулировка цели, планирование эксперимента, выбор предметов и средств деятельности, соблюдение техники безопасности, подбор методов расчета, описание эксперимента, выводы и заключение по эксперименту).
Примеры алгоритмов действий при изучении учебных элементов УЭ-8 «Электронная структура атомов», УЭ-12 «Теория молекулярных орбиталей», УЭ-14 «Пространственная конфигурация молекул», УЭ-31 «Гидролиз», УЭ-32 «Окислительно-восстановительные реакции», а также при выполнении лабораторных работ, входящих в состав УЭ-15 «Твердое, жидкое, газовое состояние», УЭ-17 «Способы выражения содержания растворенного вещества в растворе», УЭ-18 «Тепловой эффект реакции. Энтальпия», имеются в учебно-методической литературе, разработанной в процессе выполнения данной исследовательской работы [30, 33, 53]. Использование алгоритмов действий, создающих ориентировочную основу действий, служит эффективным методическим приемом при адаптационном обучении химии студентов первого курса.
Реализация адаптационного обучения химии столь же эффективна при подходе к структурированию содержания через укрупнение дидактических элементов и единиц в рамках модульного изложения изучаемого материала. Рассмотрение данного подхода к изучению химии начнем с того, что ранее была отмечена обусловленность меры усвоения содержания промежуточных модулей блока 1 «Общая химия»уровнем знаниями студентов ряда учебных элементов входного блока 0 (или модуля М-0). Достижение частных дидактических целей по усвоению содержания учебных элементов модуля М-0 (параграфов школьного курса) выступает гарантом достижения интегрирующих целей, в особенности таких модулей, как М-8 «Гидролиз» и М-9 «Окислительно-восстановительные реакции». Для этого во входном модуле М-0 из классов химических веществ (органических и неорганических) особого внимания заслуживают основные классы неорганических соединений, выделенные в следующие УЭ: УЭ-VIII «Металлы», УЭ-IX «Неметаллы», УЭ-X «Оксиды», УЭ-XI «Основания», УЭXII «Кислоты», УЭ-XIII «Соли» (прил. 1).
Рассмотрение содержания учебных элементов модуля М-8 «Гидролиз» в совокупности с содержанием одноименных учебных элементов модуля М-0 по основным классам неорганических соединений (ОКНС) представлено в прил. 12.
При актуализации и повторении ранее известной терминологии, а также при усвоении содержания новых терминов и понятий на русском и родном, нерусском, языках эффективно использование метода укрупнения УЭ и дидактических единиц (дескрипторов) в них по химическому принципу противоположности свойств соединений и лингвистическому принципу антонимии (противоположности значений слов).
В педагогике под дидактической единицей понимают научное понятие, а под укрупнением дидактических единиц (УДЕ) – образование системы понятий [9, 35, 84, 87, 88]. Укрупнение учебных элементов (УУЭ) предполагает объединение их содержаний. Однако дидактические единицы в лингвистике являются лингвистическими единицами – лексемами (словами), объединение которых по принципу антонимии есть укрупнение лингвистических единиц (УЛЕ). Предварительное использование приема укрупнения лингвистических единиц создает лингвистическую ориентировочную основу (ЛОО) для правильного подбора дидактических единиц с целью их укрупнения, а также понимания содержания укрупненных дидактических единиц. При этом возникает эффект синергизма: происходит такое согласование двух действий, которое оказывается сильнее отдельно взятых действий.