Оценить:
 Рейтинг: 0

Организация ЭВМ и периферийные устройства

<< 1 2 3 4 >>
На страницу:
2 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

Популярным тестом системной производительности является также пакет SYSmark. Он широко используется специалистами по информационным технологиям, производителями компьютерного оборудования, аналитиками и журналистами. Тесты SYSmark SE разделены на два сценария: создание интернет-контента и офисная производительность. В тесте создания интернет-контента можно выделить три тестовые группы: 3D-графика, 2D-графика и web-публикация. Сценарий офисной производительности также разделён на три тестовые группы: связь (электронная почта, календарь и просмотр web-страниц), создание документов и анализ данных. Приложения запускаются не последовательно, одно за другим (как в предыдущих версиях), а одновременно, и в процессе прохождения теста осуществляется переключение между ними, что точнее соответствует реальным условиям типичной офисной работы.

2.2.4. Эксплуатационная производительность

Эксплуатационная производительность – производительность компьютера (либо его компонента или подсистемы) при выполнении конкретных приложений. Так, например, если компьютер предполагается использовать преимущественно для решения задач автоматизации проектирования, то целесообразно протестировать его тестами AutoCAD, которые интегрально оценивают производительность ПК на этой нагрузке. Соответственно оценивается производительность тестами С Сomplier (тест компиляции с языка Си), Adobe Photoshop (тест фотоэффектов программы PhotoShop), текстовых процессоров (загрузка, прокрутка, печать документов, поиск/замена фрагментов текста), Quake (игровой тест) и т.д.

В случае систематического использования на компьютере нескольких приложений для оценки эксплуатационной производительности может быть сформирован интегральный показатель на основе определения весовых коэффициентов отдельных приложений.

2.3. Производительность процессоров

Достаточно продолжительное время основной мерой производительности процессоров и компьютеров в целом служила их тактовая частота. Однако по мере усложнения внутренней организации микропроцессоров (кэш-память, конвейерная обработка, суперскалярность, многоядерность и т.д.) этот параметр утратил своё определяющее значение. В настоящее время для оценки производительности процессоров используется ряд специальных единиц.

Для измерения производительности своих 32-разрядных процессоров фирма Intel в 1992 г. предложила следующую единицу: индекс относительной производительности микропроцессоров Intel, называемый iCOMP Index (Intel COmparative Microprocessor Performance Index).

В 1996 г. была введена новая единица – iCOMP Index 2.0, ориентированная на Pentium (MMX) – процессоры. При вычислении этого индекса полностью исключены 16-битные операции и добавлен мультимедийный тест (?20 %).

В последней версии индекса iCOMP Index 3.0 (?2000 г.) было учтено возросшее использование трёхмерной графики, мультимедийных средств, технологий Internet, обработки потоковых данных и вычислительных задач. При вычислении данного индекса используются команды из набора команд SSE. Базовым был выбран процессор Pentium II 350 МГц, индекс производительности которого принят равным 1000 единицам, а, например, Pentium III 1000 МГц имеет значение iCOMP 3.0, равное 3280.

Производительность процессоров оценивается также с помощью специальной единицы, называемой Pentium-рейтинг или P-Rating (PR). P-Rating некоторого процессора соответствует частоте эквивалентного ему по производительности Intel Pentium – процессора на тестах WinStone, выраженной в МГц. Например, P-Rating некоторого процессора, равный 4000+, означает, что данный процессор на эталонных тестах WinStone имеет производительность не ниже, чем Pentium 4000 МГц.

Вопросы для самопроверки

1. Что такое пиковая производительность компьютера и как она определяется?

2. Дайте понятие номинальной производительности и охарактеризуйте методы её определения.

3. Поясните понятие системной производительности и укажите способы её определения.

4. Что такое эксплуатационная производительность компьютера? Приведите примеры тестов эксплуатационной производительности.

5. Поясните способы и единицы измерения производительности процессоров.

3. Структура компьютера

Структурная схема компьютера приведена на рис. 1. Отметим, что в конкретных системах некоторые компоненты могут быть реализованы не в составе процессора или чипсета, а вынесены на системную плату. Рассмотрим функциональное назначение основных компонентов ПК.

3.1. Системная плата и шины

Системная или материнская плата (system board, mother board) – печатная плата, содержащая и связывающая посредством различных шин основные компоненты компьютера (процессор, оперативную память, чип-сет, графический контроллер и т.д. (рис. 1)). В настоящее время наиболее популярным типоразмером или форм-фактором (form factor) системных плат является форм-фактор ATX (305 ? 244 мм), в котором за счёт оптимального размещения компонентов улучшены условия охлаждения процессора, сокращены длины кабелей для подключения накопителей, что существенно для обеспечения быстрых режимов обмена, облегчён доступ к различным компонентам внутри корпуса (упрощение Upgrade и ремонта).

Рис. 1. Структурная схема компьютера

Шина (bus) – система проводников (как правило, параллельных).

Системная шина (host bus) – шина, посредством которой осуществляется связь между основными системными компонентами компьютера (процессор, оперативная память, кэш-память, системный контроллер-концентратор)[5 - Здесь под системными подразумеваются наиболее важные, системообразующие устройства (иногда системными считают устройства, требующие каких-либо системных ресурсов: прерываний, портов, адресного пространства памяти, каналов прямого доступа к памяти). В первых поколениях ПК к системной шине подключались все его компоненты, включая контроллеры внешних устройств.].

Шина расширения (expansion bus, local bus) – шина, предназначенная для расширения возможностей компьютера путём подключения к ней контроллеров внешних устройств. Шины расширения могут взаимодействовать с системной шиной через схемы сопряжения ("мосты" или хабы).

Любая шина обычно включает шину данных, адресную шину и шину управления, в соответствии с типом передаваемой по ним информации. По способу организации передачи информации различают выделенные и мультиплексированные шины. По выделенным шинам передаётся информация только одного типа, например, только данные.Для уменьшения разрядности по одним и тем же проводникам может передаваться разная информация в различные моменты времени, например, адреса и данные (мультиплексирование).

3.2. Процессор, основная память, чипсет

Центральный процессор (ЦП) – центральное обрабатывающее устройство компьютера, которое исполняет программы и под их управлением реализует обработку данных. ЦП называют также CPU от англ. Central Processing Unit[6 - Помимо центрального процессора в состав компьютера могут входить различные периферийные и специализированные процессоры (графические, арифметические и др.)]. Процессор, выполненный в микроэлектронном исполнении, т.е. в виде интегральной микросхемы, называется микропроцессором (МП). В настоящее время микропроцессоры реализуются в виде сверхбольших интегральных микросхем (СБИС). Например, кристаллы процессоров Intel Core i7 содержат 2,6 и более миллиардов транзисторов [4].

При выполнении на компьютере программ, связанных с моделированием, инженерными и математическими расчётами, его производительность сильно зависит от скорости выполнения операций над числами с плавающей точкой (операции умножения, деления, возведения в степень, вычисление логарифмических и тригонометрических функций). Для ускорения выполнения указанных операций и функций в состав ЦП, начиная с i486, интегрирован математический (арифметический) сопроцессор[7 - Первые три поколения процессоров не имели встроенного сопроцессора, который поставлялся в виде отдельной микросхемы.]. По аналогии с CPU он обозначается как FPU (Floating-point Processing Unit) или NPU (Numerical Processing Unit). Сопроцессор выполняет указанные функции не чисто программным способом, а большей частью аппаратно, за счёт чего и достигается его высокая производительность (в десятки раз большая, чем у CPU без сопроцессора).

Оперативная память (ОП) – основное запоминающее устройство, обеспечивающее хранение и доступ к информации (данные и команды), непосредственно обрабатываемой процессором. Для того чтобы процессор мог выполнить некоторую программу, она должна быть предварительно загружена в ОП (хотя бы частично). Характерные особенности ОП:

• ОП строится на основе памяти адресного типа – содержит массив запоминающих элементов, каждый из которых имеет свой адрес (номер), используемый для получения доступа к элементу;

• ОП относится к устройствам памяти с произвольным доступом к отдельным запоминающим элементам (RAM – Random Access Memory), при котором доступ к любому элементу осуществляется за одно и то же время независимо от адреса элемента;

• ОП строится на основе элементов памяти динамического типа (DRAM – Dynamic RAM), которые требуют периодической регенерации хранящейся информации, что снижает её быстродействие, но обеспечивает приемлемую стоимость.

Кэш-память (от англ. cache – резервный запас, хранилище) – высокоскоростная память, логически расположенная между ЦП и ОП, исключающая во многих случаях необходимость обращения ЦП к более медленной оперативной памяти. То есть предполагается, что кэш-память с высокой вероятностью содержит данные и команды, необходимые процессору в текущий момент.

Весь обмен данными между процессором и оперативной памятью в целях его ускорения осуществляется через кэш-память. Характерные особенности кэш-памяти:

• для доступа к ячейкам кэш-памяти используется так называемый ассоциативный метод доступа – разновидность произвольного доступа, при котором поиск информации осуществляется не по адресу, а по ассоциативному признаку;

• высокое быстродействие кэш-памяти обусловлено тем, что она строится на элементах памяти статического типа SRAM (Static RAM), имеющих малое время доступа и не требующих регенерации;

• в связи с высокой стоимостью кэш-памяти её объём в современных процессорах в сотни и тысячи раз меньше объёма ОП.

Наличие кэш-памяти существенно повышает общую производительность компьютера. Современные процессоры содержат несколько уровней кэш-памяти.

System BIOS (от англ. Basic Input Output System – базовая система ввода-вывода) – это микросхема постоянного или перепрограммируемого запоминающего устройства (ПЗУ или ППЗУ)[8 - ПЗУ также обозначается как ROM от англ. Read Only Memory – память только для чтения. В современных ПК BIOS хранится в перепрограммируемых ЗУ, что позволяет проводить его обновление непосредственно на системной плате.], расположенная на системной плате, в которой хранятся служебные программы для выполнения наиболее простых и универсальных операций ввода-вывода. Такими операциями являются, например, вывод символа на экран, запись сектора на диск, ввод символа с клавиатуры и др. BIOS содержит также следующие программы:

• тестовую программу для самотестирования компьютера, проверяющую работу памяти и других устройств компьютера при включении питания (программа POST – Power On Self Test);

• программы управления режимами энергосбережения;

• программы автоматического конфигурирования устройств системы (технология Plug and Play);

• программу SETUP, служащую для установки параметров конфигурации компьютера, в том числе вручную;

• программу начальной загрузки операционной системы.

В связи с этим BIOS иногда рассматривают как аппаратно-зависимую часть ОС.

Память конфигурации с автономным питанием (CMOS RAM или RTC CMOS RAM) – память, содержащая информацию о текущей конфигурации компьютера и сохраняющая свои данные даже при выключенном питании за счёт аккумулятора, расположенного на системной плате. Такая память обычно строится на транзисторах с применением КМОП-структур[9 - КМОП – комплиментарная структура металл – оксид – полупроводник.], которые характеризуются низким уровнем энергопотребления. В соответствии с англоязычным сокращением она обозначается как CMOS от Complementary Metal Oxide Semiconductor. В CMOS RAM хранится следующая информация:

• текущая дата и время (т.е. реализован календарь и системные часы реального времени – Real Time Clock (RTC));

• статусы (состояния) батареи и прочих устройств (дисковый контроллер, размер памяти, установленные адаптеры);

• перечень установленных в системе устройств (сопроцессор, накопители, видеокарта, клавиатура и др.).

Данные в этой памяти могут быть изменены программно с помощью утилиты Setup, входящей в состав BIOS. Срок службы батареи составляет 3–5 лет, и после замены батареи, возможно, придётся повторить настройку системы, включая ввод даты и времени[10 - В современных ПК параметры конфигурации определяются автоматически с помощью программ BIOS.].
<< 1 2 3 4 >>
На страницу:
2 из 4